P U M ㄷC

Number Theory A

1. Compute the remainder when $2^{3^{5}}+3^{5^{2}}+5^{2^{3}}$ is divided by 30 .
2. A substring of a number n is a number formed by removing some digits from the beginning and end of n (possibly a different number of digits is removed from each side). Find the sum of all prime numbers p that have the property that any substring of p is also prime.
3. Compute the number of ordered pairs of non-negative integers (x, y) which satisfy

$$
x^{2}+y^{2}=32045
$$

4. Let $f(n)=\sum_{\operatorname{gcd}(k, n)=1,1 \leq k \leq n} k^{3}$. If the prime factorization of $f(2020)$ can be written as $p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}$, find $\sum_{i=1}^{k} p_{i} e_{i}$.
5. Suppose that $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{R}$, satisfies the equation $f(x, y)=f(3 x+y, 2 x+2 y)$ for all $x, y \in \mathbb{Z}$. Determine the maximal number of distinct values of $f(x, y)$ for $1 \leq x, y \leq 100$.
6. Let $f(n)=\sum_{i=1}^{n} \frac{\operatorname{gcd}(i, n)}{n}$. Find the sum of all positive integers n for which $f(n)=6$.
7. We say that a polynomial p is respectful if $\forall x, y \in \mathbb{Z}, y-x$ divides $p(y)-p(x)$, and $\forall x \in$ $\mathbb{Z}, p(x) \in \mathbb{Z}$. We say that a respectful polynomial is disguising if it is nonzero, and all of its non-zero coefficients lie between 0 and 1 , exclusive. Determine $\sum \operatorname{deg}(f) \cdot f(2)$, where the sum includes all disguising polynomials f of degree at most 5 .
8. Consider the sequence given by $a_{0}=3$ and such that for $i \geq 1$, we have $a_{i}=2^{a_{i-1}}+1$. Let m be the smallest integer such that a_{3}^{3} divides a_{m}. Let m^{\prime} the smallest integer such that a_{m}^{3} divides $a_{m^{\prime}}$. Find the value of m^{\prime}.
