Number Theory A Solutions

1. Compute the remainder when $2^{3^{5}}+3^{5^{2}}+5^{2^{3}}$ is divided by 30 .

Proposed by: Matthew Kendall
Answer: 6
Computing the remainder modulo 2:

$$
2^{3^{5}}+3^{5^{2}}+5^{2^{3}} \equiv 0+1^{5^{2}}+1^{2^{3}} \equiv 0 \quad(\bmod 2)
$$

modulo 3 ,

$$
2^{3^{5}}+3^{5^{2}}+5^{2^{3}} \equiv(-1)^{3^{5}}+0+(-1)^{2^{3}} \equiv 0, \quad(\bmod 3)
$$

and modulo 5 using Fermat's Little Theorem,

$$
2^{3^{5}}+3^{5^{2}}+5^{2^{3}} \equiv 2^{3}+3^{1}+0 \equiv 1 \quad(\bmod 5)
$$

By Chinese Remainder, we know the remainder must be 6 .
2. A substring of a number n is a number formed by removing any number of digits from the beginning and end of n (not necessarily the same number of digits are removed from each side). Find the sum of all prime numbers p that have the property that any substring of p is also prime.

Proposed by: Daniel Carter

Answer: 576
The prime numbers in question are $2,3,5,7,23,37,53,73$, and 373 , which sum to 576 . One can find the one- and two-digit primes with this property without much difficulty. Given those, the only candidate three-digit numbers are $237,373,537$, and 737 , of which only 373 is prime. Then one can see immediately that there are no four-digit primes with this property, since both the first and last three digits must also be primes with this property, i.e. they must both be 373 . This also means there are no primes with five or more digits with this property.
3. Compute the number of nonnegative integral ordered pairs (x, y) such that $x^{2}+y^{2}=32045$.

Proposed by: Nancy Xu

Answer: 16
We can write $32045=5 \cdot 13 \cdot 17 \cdot 29=(1+2 i)(1-2 i)(2+3 i)(2-3 i)(1+4 i)(1-4 i)(2+5 i)(2-5 i)$, and from here we can write $x^{2}+y^{2}=(x-y i)(x+y i)=32045$ by taking the product of one of each of the conjugate pairs. There are 2 options for each conjugate pair for a total of $\frac{2^{4}}{2}=8$ to account for overcounting, but x and y can be swapped, so there are 16 nonnegative ordered pairs.
4. Let $f(n)=\sum_{\operatorname{gcd}(k, n)=1,1 \leq k \leq n} k^{3}$. If the prime factorization of $f(2020)$ can be written as $p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}$, find $\sum_{i=1}^{k} p_{i} e_{i}$.
Proposed by: Frank Lu
Answer: 818
First, note that we can write $\sum_{i=1}^{n} i^{3}=\sum_{d \mid n} \sum_{\operatorname{gcd}(i, n)=d} i^{3}=\sum_{d \mid n} \sum_{\operatorname{gcd}(i / d, n / d)=1} d^{3} i^{3}=\sum_{d \mid n} d^{3} f(n / d)$.
But then we have that $\left(\frac{n^{2}+n}{2}\right)^{2}=\sum_{d \mid n} d^{3} f(n / d)$. Now, note that, for a constant k dividing
n, we have that $\sum_{k|d, d| n} d^{3} f(n / d)=\sum_{k|d, d| n}\left(k d^{\prime}\right)^{3} f(n / d)=k^{3}\left(\frac{(n / k)^{2}+(n / k)}{2}\right)^{2}$. Then, we can use a PIE-esque argument based on divisibility by each of the prime factors (and products of these prime factors), yielding us, after simplifying, $\frac{n^{2}}{4}\left(p_{1}-1\right) \ldots\left(p_{k}-1\right)\left(\frac{n^{2}}{p_{1} \ldots p_{k}}+(-1)^{k}\right)$. We thus find that $f(2020)=2020^{2} / 4 * 4 * 100 * 4039$, which equals $2^{6} * 5^{4} * 101^{2} * 4039=2^{6} * 5^{4} * 7 * 101^{2} * 577$, yielding us the answer of $12+20+7+202+577=32+786=818$.
5. Suppose that $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{R}$, such that $f(x, y)=f(3 x+y, 2 x+2 y)$. Determine the maximal number of distinct values of $f(x, y)$ for $1 \leq x, y \leq 100$.

Proposed by: Frank Lu

Answer: 8983
Note that the only places where we can get distinct values for $f(x, y)$ are those that are not of the form $(3 a+b, 2 a+2 b)$ for some integers (a, b) in the range $1 \leq a, b \leq 100$. Observe that if $x=3 a+b, y=2 a+2 b$, then we'd have that $a=\frac{2 x-y}{4}, b=\frac{3 y-2 x}{4}$. In other words, for this to occur, we need that $2 x \equiv y, 3 y(\bmod 4)$. But then we have that y is even and x is the same parity of $y / 2$.
Furthermore, for the points that are of the above form, in order for $1 \leq a, b \leq 100$ as well, we need $4 \leq 2 x-y \leq 400$ and $4 \leq 3 y-2 x \leq 400$. From here, we see that for a given value of y, we have that $y+4 \leq 2 x \leq 3 y-4$, as the other two bounds are automatically satisfied as $1 \leq x, y \leq 100$. But then with $y=2 y_{1}$, we see that $y_{1}+2 \leq x \leq 3 y_{1}-2$. For $y_{1} \leq 34$, we see that both bounds are the final bounds, meaning that, as x is the same sign as y_{1}, we have $y_{1}-1$ values for x. Over the values of y_{1} this yields us with $33 \cdot 17=561$.
For $35 \leq y_{1} \leq 50$, we have $y_{1}+2 \leq x \leq 100$ as the sharp bounds. Notice that this yields us with $\left\lfloor\frac{100-y_{1}}{2}\right\rfloor$ values for x, again maintaining the parity condition. Summing over these values yields us with $25+25+26+26+\cdots+32+32=57 \cdot 8=456$ values, so in total we have $561+456=1017$ values of (x, y) that are images of the function that sends (x, y) to $(3 x+y, 2 x+2 y)$ within $1 \leq x, y \leq 100$.
The number of distinct values of $f(x, y)$ is then at most $100^{2}-1017=8983$.
6. Let $f(n)=\sum_{i=1}^{n} \frac{\operatorname{gcd}(i, n)}{n}$. Find the sum of all n so that $f(n)=6$.

Proposed by: Frank Lu
Answer: 1192
Note that, the number of i so that $\operatorname{gcd}(i, n)=d$ is $\phi(n / d)$, if $n \mid d$. Then, we see that $f(n)=\sum_{i=1}^{n} \operatorname{gcd}(i, n)=\sum_{d \mid n} d \phi(n / d)=\sum_{d \mid n} n / d \phi(d)$ Now, suppose that n has prime factorization $n=p_{1}^{e_{1}} \ldots p_{k}^{e_{k}}$. Then, note that, since $\frac{1}{d} \phi(d)$ is multiplicative, we can write $f(n) / n$ as $\prod_{i=1}^{k} \sum_{j=0}^{e_{i}} \frac{1}{p_{i}^{j}} \phi\left(p_{i}^{j}\right)=\prod_{i=1}^{k}\left(1+\sum_{j=1}^{e_{i}} \frac{1}{p_{i}^{j}} p_{i}^{j-1}(p-1)\right)=\prod_{i=1}^{k}\left(1+\sum_{j=1}^{e_{i}} \frac{p_{i}-1}{p_{i}}\right)=$ $\prod_{i=1}^{k}\left(1+\frac{e_{i}\left(p_{i}-1\right)}{p_{i}}\right) .=\prod_{i=1}^{k}\left(\frac{\left(e_{i}+1\right) p_{i}-e_{i}}{p_{i}}\right)$. Now, for this to be even, we need that the numerator of this product to first be even. But note that for p_{i} odd that $\left(e_{i}+1\right) p_{i}-e_{i}$ is odd, which means that one of our primes has to be 2 , which say is $p_{1}=2$. Furthermore, we need that $e_{1} / 2+1$ needs to be even for the product to equal 6 . We thus see that $e_{1}=2,6,10$. For $e_{1}=10$, we see that we just have one prime factor, which means that we get the number $n=2^{10}=1024$. For $e_{1}=6$, we have that $e_{1} / 2+1=4$, which is too small. However, note also that the smallest possible value for any other term in the product, with $p_{i} \geq 3$, is $5 / 3>3 / 2$. For $e_{1}=2$, we have that $e_{1} / 2+1=2$, again is too small. We want the product of the next terms to be 3. Note that we can't have more than 2 other prime factors, the product of this is at most $5 / 3 \cdot 9 / 5 \cdot 13 / 7=39 / 7>3$. For 2 prime factors, the smallest possible value of the terms due to the other factors is $5 / 3 \cdot 9 / 3=3$, giving $n=2^{2} \cdot 3 \cdot 5=60$. For 1 prime factor, we want
$1+\frac{e_{2}\left(p_{2}-1\right)}{p_{2}}=3$, or that $e_{2}\left(p_{2}-1\right)=2 p_{2}$, which requires $p_{2} \mid e_{2}$, or $p_{2}-1 \mid 2$, meaning that $p_{2}=3$, and that $e_{2}=3$. This gives $n=2^{2} \cdot 3^{3}=108$. Our total sum is thus $108+1024+60=1192$.
7. We say that a polynomial p is respectful if $\forall x, y \in \mathbb{Z}, y-x$ divides $p(y)-p(x)$, and $\forall x \in$ $\mathbb{Z}, p(x) \in \mathbb{Z}$. We say that a respectful polynomial is disguising if it is nonzero, and all of its non-zero coefficients lie between 0 and 1 , exclusive. Determine $\sum \operatorname{deg}(f) \cdot f(2)$ over all disguising polynomials f of degree at most 5 .

Proposed by: Frank Lu

Answer: 290
First, we claim that all respectful polynomials of degree 3 or less have integer coefficients. To see this, note that $f(0)=0$. Consider now $f(1), f(2), f(3)$. By Lagrange Interpolation, this polynomial is uniquely determined by these values. Note that we can write this polynomial as $\frac{f(3)}{6} x(x-1)(x-2)-\frac{f(2)}{2} x(x-1)(x-3)+\frac{f(1)}{2} x(x-2)(x-3)$, by the above properties. Note that the second term is a polynomial with integer coefficients. However, note that $f(3)$ is divisible by 3 , and is a multiple of 2 different from $f(1)$. Hence, note that $f(3) / 3$ and $f(1)$ are both integers of the same parity. Note then that this will result in an integer-coefficient polynomial, proving the desired. In particular, no disguising polynomials of degree 3 or lower exist. We now consider the case for degree at most 5 in general. For simplicity, let $a(x)=x(x-1)(x-2) \cdots(x-5)$. Again, we can write the polynomial in the above form, as $\sum_{i=1}^{5}(-1)^{5-i} \frac{1}{i!(5-i)!} \frac{a(x)}{x-i}$. Now, note that $f(5) \equiv f(2)(\bmod 3)$, which also means that $f(5) \equiv 10 f(2)(\bmod 3)$. Similarly, we have that $f(4) \equiv f(1)(\bmod 3)$. We can thus write this expression as $x(x-1)(x-3)(x-$ 4) $\left(\frac{f(5)-10 f(2)}{120} x-\frac{5 f(5)-20 f(2)}{120}\right)+x(x-2)(x-3)(x-5)\left(\frac{f(4)-f(1)}{24} x-\frac{4 f(4)-f(1)}{24}\right)+\frac{f(3)}{6} x(x-1)(x-$ 2) $(x-4)(x-5)$. This shows us that the denominators of the coefficients have to divide 8 ; indeed, note that $f(5)-10 f(2)$ and $5 f(5)-20 f(2)$ are both divisible by 15 . Furthermore, we could alternatively re-write this by taking (mod 2). This instead yields the expression (splitting the term corresponding to $i=3$ in half) $x(x-2)(x-4)(x-5)\left(\frac{f(1)+f(3)}{24} x+\frac{f(1)+3 f(3)}{24}\right)+x(x-1)(x-$ 2) $(x-4)\left(\frac{5 f(3)+f(5)}{120} x+\frac{15 f(3)+5 f(5)}{120}\right)+\ldots$, with the remaining terms having leading coefficients $\frac{f(2)}{12}$ and $\frac{f(4)}{24}$, which have denominators that are not divisible by 4 . This further shows that the denominators have to divide 4 . Repeating this argument for 4th degree polynomials shows that all the denominators, in fact, have to divide 2 , by only noticing the leading coefficients of the terms with $f(4), f(1)$. Checking the case for 4 , notice that there can only be one such disguising polynomial; if there were two, since both of the leading coefficients are the same, it follows that their difference is somewhat disguising. But this doesn't exist for a polynomial of degree at most 3 . Thus, noticing that $\frac{x^{4}+x^{2}}{2}$ is disguising, we see that this the only one for this degree. By a similar token, notice that for any two disguising polynomials of degree 5 that have the same leading coefficient, notice that $f-g$ must be an integer polynomial away from $\frac{x^{4}+x^{2}}{2}$. But the largest difference between the coefficients is -1 . This means that either such polynomials are equal or differ by $\frac{x^{4}+x^{2}}{2}$, so there are at most 6 of these, with at most 2 for a given leading coefficient. For $\frac{1}{2}$ leading coefficient, we see that $\frac{x^{5}+x^{3}}{2}$ is disguising; the difference we have for x, y is $\frac{(x-y)}{2}\left(x^{4}+x^{3} y+x^{2} y^{2}+x y^{3}+y^{4}+x^{2}+x y+y^{2}\right)$. But notice that this is equivalent to $2 x+2 y+4 x y(\bmod 2)$ since all powers of any integer have the same parity. Thus, we see that $\frac{x^{5}+x^{4}+x^{3}+x^{2}}{2}$ is also disguising. For the coefficient with $\frac{1}{4}$, for this to be an integer at all, this has to double to some of the disguising polynomial, meaning that this is $\frac{x^{5}+x^{3}}{4}$, possibly with some $\frac{1}{2} x^{i}$ terms. By the difference with $\frac{x^{4}+x^{2}}{2}$, we only need to consider 8 of these. Trying these out, note that only 4 of them actually yield integers: $\frac{x^{5}+2 x^{4}+x^{3}}{4}, \frac{x^{5}+3 x^{3}}{4}, \frac{x^{5}+x^{3}+2 x}{4}$, and $\frac{x^{5}+2 x^{4}+3 x^{3}+2 x}{4}$. Requiring that $f(4)$ is also divisible by 4 restricts us to the first two possibilities. The second breaks down: plugging in $x=5$ yields $\frac{5^{3} \cdot 28}{4}=7 \cdot 125$, which is not equivalent to $1(\bmod 4)$. As for the first, note
that $f(3)=27 \frac{16}{4}=27 \cdot 4=108$, which isn't equivalent to $1(\bmod 4)$. This means that no other disguising polynomials exist. Our three disguising polynomials are thus $\frac{x^{4}+x^{2}}{2}, \frac{x^{5}+x^{3}}{2}$, and $\frac{x^{5}+x^{4}+x^{3}+x^{2}}{2}$, which take on values 10,20 , and 30 , resulting that $10 \cdot 4+(20+30) \cdot 5=290$.
8. Consider the sequence given by $a_{0}=3$ and such that for $i \geq 1$, we have $a_{i}=2^{a_{i-1}}+1$. Let m be the smallest integer such that a_{3}^{3} divides a_{m}. Let m^{\prime} the smallest integer such that a_{m}^{3} divides $a_{m^{\prime}}$. Find the value of m^{\prime}.
Proposed by: Frank Lu
Answer: 35
First, we show that a_{i} divides a_{i+1} for each nonnegative integer 1 . We do this by induction. Our base case is $i=0$, by which we see that this holds trivially. Now, say that a_{i} divides a_{i+1}. Then, notice that $a_{i+2}=2^{a_{i+1}}+1=2^{a_{i} \frac{a_{i+1}}{a_{i}}}+1$. Notice that each of our a_{i} will be odd, meaning that we see that $a_{i+2}=\left(2^{a_{i}}\right)^{\frac{a_{i+1}}{a_{i}}}+1^{\frac{a_{i+1}}{a_{i}}}$ is going to be divisible by $2^{a_{i}}+1=a_{i+1}$. This finishes our induction. Now, given a prime p, let $i(p)$ be the smallest index i so that $a_{i(p)}$ is divisible by p. We claim that $v_{p}\left(a_{i(p)-1}\right), v_{p}\left(a_{i(p)}\right), v_{p}\left(a_{i(p)+1}\right), \ldots$ is an arithmetic progression. To prove this, we again show with induction that $v_{p}\left(a_{i(p)+k}\right)=(k+1) v_{p}\left(a_{i(p)}\right)$. Our base case is $k=0$, with $k=-1$ given. From here, given this for all values before $i(p)+k$, notice that, by the lifting the exponent lemma, we have that $v_{p}\left(2^{a_{i(p)+k}}+1\right)=v_{p}\left(2^{\frac{a_{i(p)+k}}{a_{i(p)+k-1}} a_{i(p)+k-1}}+\right.$ $1)=v_{p}\left(\left(2^{a_{i(p)+k-1}}\right)^{\frac{a_{i(p)+k}}{a_{i(p)+k-1}}}+1^{\frac{a_{i(p)+k}}{a_{i(p)+k-1}}}\right)$, which in turn equals $v_{p}\left(a_{i(p)+k}\right)+v_{p}\left(\frac{a_{i(p)+k}}{a_{i(p)+k-1}}\right)=$ $2 v_{p}\left(a_{i(p)+k}\right)-v_{p}\left(a_{i(p)+k-1}\right)=(k+2) a_{i(p)}$, which gives us our desired. Finally, notice that that $a_{3}=2^{513}+1$, by trying the first two values. Notice that for each prime p that divides a_{3}, if j is the index so p first divides a_{j}, it follows that the first index k where the power is up by 3 is so that $(k+1-j)=3(4-j)$, or that $k=12-3 j-1+j=11-2 j$. Noticing that $a_{0}=3$, divisible by 3 , we therefore have our index being $11=m$ and therefore m^{\prime}, by a similar logic, equals 35 .

