Number Theory B

1. Andrew has a four-digit number whose last digit is 2 . Given that this number is divisible by 9 , determine the number of possible values for this number that Andrew could have. Note that leading zeros are not allowed.
2. The smallest three positive proper divisors of an integer n are $d_{1}<d_{2}<d_{3}$ and they satisfy $d_{1}+d_{2}+d_{3}=57$. Find the sum of the possible values of d_{2}.
3. Compute the remainder when $2^{3^{5}}+3^{5^{2}}+5^{2^{3}}$ is divided by 30 .
4. A substring of a number n is a number formed by removing some digits from the beginning and end of n (possibly a different number of digits is removed from each side). Find the sum of all prime numbers p that have the property that any substring of p is also prime.
5. Compute the number of ordered pairs of non-negative integers (x, y) which satisfy

$$
x^{2}+y^{2}=32045
$$

6. Let $f(n)=\sum_{\operatorname{gcd}(k, n)=1,1 \leq k \leq n} k^{3}$. If the prime factorization of $f(2020)$ can be written as $p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}$, find $\sum_{i=1}^{k} p_{i} e_{i}$.
7. Suppose that $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{R}$, satisfies the equation $f(x, y)=f(3 x+y, 2 x+2 y)$ for all $x, y \in \mathbb{Z}$. Determine the maximal number of distinct values of $f(x, y)$ for $1 \leq x, y \leq 100$.
8. Let $f(n)=\sum_{i=1}^{n} \frac{\operatorname{gcd}(i, n)}{n}$. Find the sum of all positive integers n for which $f(n)=6$.
