
Number Theory B Solutions

1. Andrew has a four-digit number whose last digit is 2. Given that this number is divisible by
9, determine the number of possible values for this number that Andrew could have.

Proposed by: Frank Lu

Answer: 100

It suffices to find the smallest and largest four-digit numbers that satisfy these conditions,
because any two such numbers differ by a multiple of 90. We recall that an integer is divisible
by 9 if and only if the sum of the digits is divisible by 9. So for the smallest integer, this is
1062. For the largest, we note that the largest possible sum of digits is 27. This yields the
integer 9972.

Their difference is 8910, and dividing by 90 yields 99. Hence, there are 100 such numbers.

2. The smallest three positive proper divisors of an integer n are d1 < d2 < d3 so that d1+d2+d3 =
57. Find the sum of the possible values of d2.

Proposed by: Frank Lu

Answer: 42

Note that d1 = 1 for all n. It suffices to solve d2 + d3 = 56.

Note that the only possibilities that we have for d2, d3 are either that d2, d3 are distinct primes,
or that d3 is equal to d22, where d2 is a prime. For the second, notice that there is only one
possible solution, namely by d22 + d2 = 56, yielding us with d2 = 7.

In the other case, we see that we want d2, 56−d2 to both be primes. We see that the primes less
than 28 are 2, 3, 5, 7, 11, 13, 17, 19, 23, with 56−d2 equaling, respectively, 54, 53, 51, 49, 45, 43, 39, 37, 33.
But from this list, the only pairs that work are (3, 53), (13, 43), and (19, 37). Therefore, it fol-
lows that the sum of the possible d2 is 3 + 7 + 13 + 19 = 42.

3. Compute the remainder when 23
5

+ 35
2

+ 52
3

is divided by 30.

Proposed by: Matthew Kendall

Answer: 6

Computing the remainder modulo 2:

23
5

+ 35
2

+ 52
3

≡ 0 + 15
2

+ 12
3

≡ 0 (mod 2),

modulo 3,

23
5

+ 35
2

+ 52
3

≡ (−1)3
5

+ 0 + (−1)2
3

≡ 0, (mod 3)

and modulo 5 using Fermat’s Little Theorem,

23
5

+ 35
2

+ 52
3

≡ 23 + 31 + 0 ≡ 1 (mod 5).

By Chinese Remainder, we know the remainder must be 6.

4. A substring of a number n is a number formed by removing any number of digits from the
beginning and end of n (not necessarily the same number of digits are removed from each
side). Find the sum of all prime numbers p that have the property that any substring of p is
also prime.

Proposed by: Daniel Carter

Answer: 576
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The prime numbers in question are 2, 3, 5, 7, 23, 37, 53, 73, and 373, which sum to 576.
One can find the one- and two-digit primes with this property without much difficulty. Given
those, the only candidate three-digit numbers are 237, 373, 537, and 737, of which only 373 is
prime. Then one can see immediately that there are no four-digit primes with this property,
since both the first and last three digits must also be primes with this property, i.e. they must
both be 373. This also means there are no primes with five or more digits with this property.

5. Compute the number of nonnegative integral ordered pairs (x, y) such that x2 + y2 = 32045.

Proposed by: Nancy Xu

Answer: 16

We can write 32045 = 5 ·13 ·17 ·29 = (1+2i)(1−2i)(2+3i)(2−3i)(1+4i)(1−4i)(2+5i)(2−5i),
and from here we can write x2+ y2 = (x− yi)(x+ yi) = 32045 by taking the product of one of

each of the conjugate pairs. There are 2 options for each conjugate pair for a total of 24

2 = 8
to account for overcounting, but x and y can be swapped, so there are 16 nonnegative ordered
pairs.

6. Let f(n) =
∑

gcd(k,n)=1,1≤k≤n

k3. If the prime factorization of f(2020) can be written as pe11 pe22 . . . pekk ,

find
k∑

i=1

piei.

Proposed by: Frank Lu

Answer: 818

First, note that we can write
n∑

i=1

i3 =
∑
d|n

∑
gcd(i,n)=d

i3 =
∑
d|n

∑
gcd(i/d,n/d)=1

d3i3 =
∑
d|n

d3f(n/d).

But then we have that (n
2+n
2 )2 =

∑
d|n d

3f(n/d). Now, note that, for a constant k dividing

n, we have that
∑

k|d,d|n
d3f(n/d) =

∑
k|d,d|n

(kd′)3f(n/d) = k3( (n/k)
2+(n/k)
2 )2. Then, we can use a

PIE-esque argument based on divisibility by each of the prime factors (and products of these

prime factors), yielding us, after simplifying, n2

4 (p1−1) . . . (pk−1)( n2

p1...pk
+(−1)k).We thus find

that f(2020) = 20202/4∗4∗100∗4039, which equals 26∗54∗1012∗4039 = 26∗54∗7∗1012∗577,
yielding us the answer of 12 + 20 + 7 + 202 + 577 = 32 + 786 = 818.

7. Suppose that f : Z× Z → R, such that f(x, y) = f(3x+ y, 2x+ 2y). Determine the maximal
number of distinct values of f(x, y) for 1 ≤ x, y ≤ 100.

Proposed by: Frank Lu

Answer: 8983

Note that the only places where we can get distinct values for f(x, y) are those that are not
of the form (3a+ b, 2a+ 2b) for some integers (a, b) in the range 1 ≤ a, b ≤ 100. Observe that
if x = 3a + b, y = 2a + 2b, then we’d have that a = 2x−y

4 , b = 3y−2x
4 . In other words, for this

to occur, we need that 2x ≡ y, 3y (mod 4). But then we have that y is even and x is the same
parity of y/2.

Furthermore, for the points that are of the above form, in order for 1 ≤ a, b ≤ 100 as well, we
need 4 ≤ 2x − y ≤ 400 and 4 ≤ 3y − 2x ≤ 400. From here, we see that for a given value of
y, we have that y + 4 ≤ 2x ≤ 3y − 4, as the other two bounds are automatically satisfied as
1 ≤ x, y ≤ 100. But then with y = 2y1, we see that y1 + 2 ≤ x ≤ 3y1 − 2. For y1 ≤ 34, we
see that both bounds are the final bounds, meaning that, as x is the same sign as y1, we have
y1 − 1 values for x. Over the values of y1 this yields us with 33 · 17 = 561.
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For 35 ≤ y1 ≤ 50, we have y1 + 2 ≤ x ≤ 100 as the sharp bounds. Notice that this yields
us with ⌊ 100−y1

2 ⌋ values for x, again maintaining the parity condition. Summing over these
values yields us with 25 + 25 + 26 + 26 + · · · + 32 + 32 = 57 · 8 = 456 values, so in total we
have 561 + 456 = 1017 values of (x, y) that are images of the function that sends (x, y) to
(3x+ y, 2x+ 2y) within 1 ≤ x, y ≤ 100.

The number of distinct values of f(x, y) is then at most 1002 − 1017 = 8983.

8. Let f(n) =
∑n

i=1
gcd(i,n)

n . Find the sum of all n so that f(n) = 6.

Proposed by: Frank Lu

Answer: 1192

Note that, the number of i so that gcd(i, n) = d is ϕ(n/d), if n|d. Then, we see that
f(n) =

∑n
i=1 gcd(i, n) =

∑
d|n dϕ(n/d) =

∑
d|n n/dϕ(d) Now, suppose that n has prime

factorization n = pe11 . . . pekk . Then, note that, since 1
dϕ(d) is multiplicative, we can write

f(n)/n as
∏k

i=1

∑ei
j=0

1

pj
i

ϕ(pji ) =
∏k

i=1(1 +
∑ei

j=1
1

pj
i

pj−1
i (p − 1)) =

∏k
i=1(1 +

∑ei
j=1

pi−1
pi

) =∏k
i=1(1+

ei(pi−1)
pi

). =
∏k

i=1(
(ei+1)pi−ei

pi
). Now, for this to be even, we need that the numerator

of this product to first be even. But note that for pi odd that (ei+1)pi−ei is odd, which means
that one of our primes has to be 2, which say is p1 = 2. Furthermore, we need that e1/2 + 1
needs to be even for the product to equal 6. We thus see that e1 = 2, 6, 10. For e1 = 10, we see
that we just have one prime factor, which means that we get the number n = 210 = 1024. For
e1 = 6, we have that e1/2 + 1 = 4, which is too small. However, note also that the smallest
possible value for any other term in the product, with pi ≥ 3, is 5/3 > 3/2. For e1 = 2, we
have that e1/2 + 1 = 2, again is too small. We want the product of the next terms to be
3. Note that we can’t have more than 2 other prime factors, the product of this is at most
5/3 · 9/5 · 13/7 = 39/7 > 3. For 2 prime factors, the smallest possible value of the terms due
to the other factors is 5/3 · 9/3 = 3, giving n = 22 · 3 · 5 = 60. For 1 prime factor, we want

1+ e2(p2−1)
p2

= 3, or that e2(p2−1) = 2p2, which requires p2|e2, or p2−1|2, meaning that p2 = 3,

and that e2 = 3. This gives n = 22 · 33 = 108. Our total sum is thus 108 + 1024 + 60 = 1192.
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