Number Theory B Solutions

1. Andrew has a four-digit number whose last digit is 2 . Given that this number is divisible by 9, determine the number of possible values for this number that Andrew could have.

Proposed by: Frank Lu
Answer: 100
It suffices to find the smallest and largest four-digit numbers that satisfy these conditions, because any two such numbers differ by a multiple of 90 . We recall that an integer is divisible by 9 if and only if the sum of the digits is divisible by 9 . So for the smallest integer, this is 1062. For the largest, we note that the largest possible sum of digits is 27 . This yields the integer 9972.
Their difference is 8910 , and dividing by 90 yields 99 . Hence, there are 100 such numbers.
2. The smallest three positive proper divisors of an integer n are $d_{1}<d_{2}<d_{3}$ so that $d_{1}+d_{2}+d_{3}=$ 57. Find the sum of the possible values of d_{2}.

Proposed by: Frank Lu
Answer: 42
Note that $d_{1}=1$ for all n. It suffices to solve $d_{2}+d_{3}=56$.
Note that the only possibilities that we have for d_{2}, d_{3} are either that d_{2}, d_{3} are distinct primes, or that d_{3} is equal to d_{2}^{2}, where d_{2} is a prime. For the second, notice that there is only one possible solution, namely by $d_{2}^{2}+d_{2}=56$, yielding us with $d_{2}=7$.

In the other case, we see that we want $d_{2}, 56-d_{2}$ to both be primes. We see that the primes less than 28 are $2,3,5,7,11,13,17,19,23$, with $56-d_{2}$ equaling, respectively, $54,53,51,49,45,43,39,37,33$. But from this list, the only pairs that work are $(3,53),(13,43)$, and $(19,37)$. Therefore, it follows that the sum of the possible d_{2} is $3+7+13+19=42$.
3. Compute the remainder when $2^{3^{5}}+3^{5^{2}}+5^{2^{3}}$ is divided by 30 .

Proposed by: Matthew Kendall
Answer: 6
Computing the remainder modulo 2 :

$$
2^{3^{5}}+3^{5^{2}}+5^{2^{3}} \equiv 0+1^{5^{2}}+1^{2^{3}} \equiv 0 \quad(\bmod 2)
$$

modulo 3 ,

$$
2^{3^{5}}+3^{5^{2}}+5^{2^{3}} \equiv(-1)^{3^{5}}+0+(-1)^{2^{3}} \equiv 0, \quad(\bmod 3)
$$

and modulo 5 using Fermat's Little Theorem,

$$
2^{3^{5}}+3^{5^{2}}+5^{2^{3}} \equiv 2^{3}+3^{1}+0 \equiv 1 \quad(\bmod 5)
$$

By Chinese Remainder, we know the remainder must be 6 .
4. A substring of a number n is a number formed by removing any number of digits from the beginning and end of n (not necessarily the same number of digits are removed from each side). Find the sum of all prime numbers p that have the property that any substring of p is also prime.

Proposed by: Daniel Carter

Answer: 576

P U M ㄷC

The prime numbers in question are $2,3,5,7,23,37,53,73$, and 373 , which sum to 576 . One can find the one- and two-digit primes with this property without much difficulty. Given those, the only candidate three-digit numbers are $237,373,537$, and 737 , of which only 373 is prime. Then one can see immediately that there are no four-digit primes with this property, since both the first and last three digits must also be primes with this property, i.e. they must both be 373 . This also means there are no primes with five or more digits with this property.
5. Compute the number of nonnegative integral ordered pairs (x, y) such that $x^{2}+y^{2}=32045$.

Proposed by: Nancy Xu

Answer: 16
We can write $32045=5 \cdot 13 \cdot 17 \cdot 29=(1+2 i)(1-2 i)(2+3 i)(2-3 i)(1+4 i)(1-4 i)(2+5 i)(2-5 i)$, and from here we can write $x^{2}+y^{2}=(x-y i)(x+y i)=32045$ by taking the product of one of each of the conjugate pairs. There are 2 options for each conjugate pair for a total of $\frac{2^{4}}{2}=8$ to account for overcounting, but x and y can be swapped, so there are 16 nonnegative ordered pairs.
6. Let $f(n)=\sum_{\operatorname{gcd}(k, n)=1,1 \leq k \leq n} k^{3}$. If the prime factorization of $f(2020)$ can be written as $p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}$,
find $\sum_{i=1}^{k} p_{i} e_{i}$.
Proposed by: Frank Lu
Answer: 818
First, note that we can write $\sum_{i=1}^{n} i^{3}=\sum_{d \mid n} \sum_{\operatorname{gcd}(i, n)=d} i^{3}=\sum_{d|n| n \operatorname{gcd}(i / d, n / d)=1} d^{3} i^{3}=\sum_{d \mid n} d^{3} f(n / d)$.
But then we have that $\left(\frac{n^{2}+n}{2}\right)^{2}=\sum_{d \mid n} d^{3} f(n / d)$. Now, note that, for a constant k dividing n, we have that $\sum_{k|d, d| n} d^{3} f(n / d)=\sum_{k|d, d| n}\left(k d^{\prime}\right)^{3} f(n / d)=k^{3}\left(\frac{(n / k)^{2}+(n / k)}{2}\right)^{2}$. Then, we can use a PIE-esque argument based on divisibility by each of the prime factors (and products of these prime factors), yielding us, after simplifying, $\frac{n^{2}}{4}\left(p_{1}-1\right) \ldots\left(p_{k}-1\right)\left(\frac{n^{2}}{p_{1} \ldots p_{k}}+(-1)^{k}\right)$. We thus find that $f(2020)=2020^{2} / 4 * 4 * 100 * 4039$, which equals $2^{6} * 5^{4} * 101^{2} * 4039=2^{6} * 5^{4} * 7 * 101^{2} * 577$, yielding us the answer of $12+20+7+202+577=32+786=818$.
7. Suppose that $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{R}$, such that $f(x, y)=f(3 x+y, 2 x+2 y)$. Determine the maximal number of distinct values of $f(x, y)$ for $1 \leq x, y \leq 100$.

Proposed by: Frank Lu

Answer: 8983
Note that the only places where we can get distinct values for $f(x, y)$ are those that are not of the form $(3 a+b, 2 a+2 b)$ for some integers (a, b) in the range $1 \leq a, b \leq 100$. Observe that if $x=3 a+b, y=2 a+2 b$, then we'd have that $a=\frac{2 x-y}{4}, b=\frac{3 y-2 x}{4}$. In other words, for this to occur, we need that $2 x \equiv y, 3 y(\bmod 4)$. But then we have that y is even and x is the same parity of $y / 2$.
Furthermore, for the points that are of the above form, in order for $1 \leq a, b \leq 100$ as well, we need $4 \leq 2 x-y \leq 400$ and $4 \leq 3 y-2 x \leq 400$. From here, we see that for a given value of y, we have that $y+4 \leq 2 x \leq 3 y-4$, as the other two bounds are automatically satisfied as $1 \leq x, y \leq 100$. But then with $y=2 y_{1}$, we see that $y_{1}+2 \leq x \leq 3 y_{1}-2$. For $y_{1} \leq 34$, we see that both bounds are the final bounds, meaning that, as x is the same sign as y_{1}, we have $y_{1}-1$ values for x. Over the values of y_{1} this yields us with $33 \cdot 17=561$.

P U M ㄷC

For $35 \leq y_{1} \leq 50$, we have $y_{1}+2 \leq x \leq 100$ as the sharp bounds. Notice that this yields us with $\left\lfloor\frac{100-y_{1}}{2}\right\rfloor$ values for x, again maintaining the parity condition. Summing over these values yields us with $25+25+26+26+\cdots+32+32=57 \cdot 8=456$ values, so in total we have $561+456=1017$ values of (x, y) that are images of the function that sends (x, y) to $(3 x+y, 2 x+2 y)$ within $1 \leq x, y \leq 100$.
The number of distinct values of $f(x, y)$ is then at most $100^{2}-1017=8983$.
8. Let $f(n)=\sum_{i=1}^{n} \frac{\operatorname{gcd}(i, n)}{n}$. Find the sum of all n so that $f(n)=6$.

Proposed by: Frank Lu
Answer: 1192
Note that, the number of i so that $\operatorname{gcd}(i, n)=d$ is $\phi(n / d)$, if $n \mid d$. Then, we see that $f(n)=\sum_{i=1}^{n} \operatorname{gcd}(i, n)=\sum_{d \mid n} d \phi(n / d)=\sum_{d \mid n} n / d \phi(d)$ Now, suppose that n has prime factorization $n=p_{1}^{e_{1}} \ldots p_{k}^{e_{k}}$. Then, note that, since $\frac{1}{d} \phi(d)$ is multiplicative, we can write $f(n) / n$ as $\prod_{i=1}^{k} \sum_{j=0}^{e_{i}} \frac{1}{p_{i}^{j}} \phi\left(p_{i}^{j}\right)=\prod_{i=1}^{k}\left(1+\sum_{j=1}^{e_{i}} \frac{1}{p_{i}^{j}} p_{i}^{j-1}(p-1)\right)=\prod_{i=1}^{k}\left(1+\sum_{j=1}^{e_{i}} \frac{p_{i}-1}{p_{i}}\right)=$ $\prod_{i=1}^{k}\left(1+\frac{e_{i}\left(p_{i}-1\right)}{p_{i}}\right) .=\prod_{i=1}^{k}\left(\frac{\left(e_{i}+1\right) p_{i}-e_{i}}{p_{i}}\right)$. Now, for this to be even, we need that the numerator of this product to first be even. But note that for p_{i} odd that $\left(e_{i}+1\right) p_{i}-e_{i}$ is odd, which means that one of our primes has to be 2 , which say is $p_{1}=2$. Furthermore, we need that $e_{1} / 2+1$ needs to be even for the product to equal 6 . We thus see that $e_{1}=2,6,10$. For $e_{1}=10$, we see that we just have one prime factor, which means that we get the number $n=2^{10}=1024$. For $e_{1}=6$, we have that $e_{1} / 2+1=4$, which is too small. However, note also that the smallest possible value for any other term in the product, with $p_{i} \geq 3$, is $5 / 3>3 / 2$. For $e_{1}=2$, we have that $e_{1} / 2+1=2$, again is too small. We want the product of the next terms to be 3. Note that we can't have more than 2 other prime factors, the product of this is at most $5 / 3 \cdot 9 / 5 \cdot 13 / 7=39 / 7>3$. For 2 prime factors, the smallest possible value of the terms due to the other factors is $5 / 3 \cdot 9 / 3=3$, giving $n=2^{2} \cdot 3 \cdot 5=60$. For 1 prime factor, we want $1+\frac{e_{2}\left(p_{2}-1\right)}{p_{2}}=3$, or that $e_{2}\left(p_{2}-1\right)=2 p_{2}$, which requires $p_{2} \mid e_{2}$, or $p_{2}-1 \mid 2$, meaning that $p_{2}=3$, and that $e_{2}=3$. This gives $n=2^{2} \cdot 3^{3}=108$. Our total sum is thus $108+1024+60=1192$.

