PUM.C

Team Round

The Team Round consists of 15 questions. Your team has **40 minutes** to complete the Team Round. Each problem is worth 5 points. At the conclusion of the test, in addition to providing answers to the problems, you will be asked to input an integer I. The value of your input is defined as V = I - S, where S is the number of problems you solve correctly. If $V \leq 0$, you receive zero bonus points. If V > 0, the number of bonus points you receive will be $\frac{20.23}{2A+V}$, where A is the number of teams (including your team) that have the same value V as you. Good luck!

- 1. Have $b, c \in \mathbb{R}$ satisfy $b \in (0, 1)$ and c > 0, then let A, B denote the points of intersection of the line y = bx + c with y = |x|, and let O denote the origin of \mathbb{R}^2 . Let f(b, c) denote the area of triangle $\triangle OAB$. Let $k_0 = \frac{1}{2022}$, and for $n \ge 1$ let $k_n = k_{n-1}^2$. If the sum $\sum_{n=1}^{\infty} f(k_n, k_{n-1})$ can be written as $\frac{p}{q}$ for relatively prime positive integers p, q, find the remainder when p + q is divided by 1000.
- 2. A triangle $\triangle A_0 A_1 A_2$ in the plane has sidelengths $A_0 A_1 = 7, A_1 A_2 = 8, A_2 A_0 = 9$. For $i \ge 0$, given $\triangle A_i A_{i+1} A_{i+2}$, let A_{i+3} be the midpoint of $A_i A_{i+1}$ and let G_i be the centroid of $\triangle A_i A_{i+1} A_{i+2}$. Let point G be the limit of the sequence of points $\{G_i\}_{i=0}^{\infty}$. If the distance between G and G_0 can be written as $\frac{a\sqrt{b}}{c}$, where a, b, c are positive integers such that a and c are relatively prime and b is not divisible by the square of any prime, find $a^2 + b^2 + c^2$.
- 3. Provided that $\{\alpha_i\}_{i=1}^{28}$ are the 28 distinct roots of $29x^{28} + 28x^{27} + \ldots + 2x + 1 = 0$, then the absolute value of $\sum_{i=1}^{28} \frac{1}{(1-\alpha_i)^2}$ can be written as $\frac{p}{q}$ for relatively prime positive integers p, q. Find p+q.
- 4. Patty is standing on a line of planks playing a game. Define a block to be a sequence of adjacent planks, such that both ends are not adjacent to any planks. Every minute, a plank chosen uniformly at random from the block that Patty is standing on disappears, and if Patty is standing on the plank, the game is over. Otherwise, Patty moves to a plank chosen uniformly at random within the block she is in; note that she could end up at the same plank from which she started. If the line of planks begins with n planks, then for sufficiently large n, the expected number of minutes Patty lasts until the game ends (where the first plank disappears a minute after the game starts) can be written as P(1/n)f(n) + Q(1/n), where P, Q are polynomials and $f(n) = \sum_{i=1}^{n} \frac{1}{i}$. Find P(2023) + Q(2023).
- 5. You're given the complex number $\omega = e^{2i\pi/13} + e^{10i\pi/13} + e^{16i\pi/13} + e^{24i\pi/13}$, and told it's a root of a unique monic cubic $x^3 + ax^2 + bx + c$, where a, b, c are integers. Determine the value of $a^2 + b^2 + c^2$.
- 6. A sequence of integers $x_1, x_2, ...$ is double-dipped if $x_{n+2} = ax_{n+1} + bx_n$ for all $n \ge 1$ and some fixed integers a, b. Ri begins to form a sequence by randomly picking three integers from the set $\{1, 2, ..., 12\}$, with replacement. It is known that if Ri adds a term by picking another element at random from $\{1, 2, ..., 12\}$, there is at least a $\frac{1}{3}$ chance that his resulting four-term sequence forms the beginning of a double-dipped sequence. Given this, how many distinct three-term sequences could Ri have picked to begin with?
- 7. Pick x, y, z to be real numbers satisfying $(-x+y+z)^2 \frac{1}{3} = 4(y-z)^2$, $(x-y+z)^2 \frac{1}{4} = 4(z-x)^2$, and $(x+y-z)^2 \frac{1}{5} = 4(x-y)^2$. If the value of xy+yz+zx can be written as $\frac{p}{q}$ for relatively prime positive integers p, q, find p+q.

PUM.C

- 8. Ryan Alweiss storms into the Fine Hall common room with a gigantic eraser and erases all integers n in the interval [2, 728] such that 3^t doesn't divide n!, where $t = \lceil \frac{n-3}{2} \rceil$. Find the sum of the leftover integers in that interval modulo 1000.
- 9. In the complex plane, let z_1, z_2, z_3 be the roots of the polynomial $p(x) = x^3 ax^2 + bx ab$. Find the number of integers n between 1 and 500 inclusive that are expressible as $z_1^4 + z_2^4 + z_3^4$ for some choice of positive integers a, b.
- 10. Let $\alpha, \beta, \gamma \in \mathbb{C}$ be the roots of the polynomial $x^3 3x^2 + 3x + 7$. For any complex number z, let f(z) be defined as follows:

$$f(z) = |z - \alpha| + |z - \beta| + |z - \gamma| - 2 \max_{w \in \{\alpha, \beta, \gamma\}} |z - w|.$$

Let A be the area of the region bounded by the locus of all $z \in \mathbb{C}$ at which f(z) attains its global minimum. Find |A|.

11. For the function

$$g(a) = \max_{x \in \mathbb{R}} \left\{ \cos x + \cos \left(x + \frac{\pi}{6} \right) + \cos \left(x + \frac{\pi}{4} \right) + \cos(x+a) \right\}$$

let $b \in \mathbb{R}$ be the input that maximizes g. If $\cos^2 b = \frac{m + \sqrt{n} + \sqrt{p} - \sqrt{q}}{24}$ for positive integers m, n, p, q, find m + n + p + q.

- 12. Observe the set $S = \{(x, y) \in \mathbb{Z}^2 : |x| \le 5 \text{ and } -10 \le y \le 0\}$. Find the number of points P in S such that there exists a tangent line from P to the parabola $y = x^2 + 1$ that can be written in the form y = mx + b, where m and b are integers.
- 13. Of all functions $h : \mathbb{Z}_{>0} \to \mathbb{Z}_{\geq 0}$, choose one satisfying h(ab) = ah(b) + bh(a) for all $a, b \in \mathbb{Z}_{>0}$ and h(p) = p for all prime numbers p. Find the sum of all positive integers $n \leq 100$ such that h(n) = 4n.
- 14. Let $\triangle ABC$ be a triangle. Let Q be a point in the interior of $\triangle ABC$, and let X, Y, Z denote the feet of the altitudes from Q to sides BC, CA, AB, respectively. Suppose that BC = 15, $\angle ABC = 60^{\circ}$, BZ = 8, ZQ = 6, and $\angle QCA = 30^{\circ}$. Let line QX intersect the circumcircle of $\triangle XYZ$ at the point $W \neq X$. If the ratio $\frac{WY}{WZ}$ can be expressed as $\frac{p}{q}$ for relatively prime positive integers p, q, find p + q.
- 15. Subsets S of the first 35 positive integers $\{1, 2, 3, ..., 35\}$ are called *contrived* if S has size 4 and the sum of the squares of the elements of S is divisible by 7. Find the number of contrived sets.

Team:

Write answers in table below:

Your input *I* (for bonus points):