Team Round

The Team Round consists of 15 questions. Your team has 40 minutes to complete the Team Round. Each problem is worth 5 points. At the conclusion of the test, in addition to providing answers to the problems, you will be asked to input an integer I. The value of your input is defined as $V=I-S$, where S is the number of problems you solve correctly. If $V \leq 0$, you receive zero bonus points. If $V>0$, the number of bonus points you receive will be $\frac{20.23}{2 A+V}$, where A is the number of teams (including your team) that have the same value V as you. Good luck!

1. Have $b, c \in \mathbb{R}$ satisfy $b \in(0,1)$ and $c>0$, then let A, B denote the points of intersection of the line $y=b x+c$ with $y=|x|$, and let O denote the origin of \mathbb{R}^{2}. Let $f(b, c)$ denote the area of triangle $\triangle O A B$. Let $k_{0}=\frac{1}{2022}$, and for $n \geq 1$ let $k_{n}=k_{n-1}^{2}$. If the sum $\sum_{n=1}^{\infty} f\left(k_{n}, k_{n-1}\right)$ can be written as $\frac{p}{q}$ for relatively prime positive integers p, q, find the remainder when $p+q$ is divided by 1000 .
2. A triangle $\triangle A_{0} A_{1} A_{2}$ in the plane has sidelengths $A_{0} A_{1}=7, A_{1} A_{2}=8, A_{2} A_{0}=9$. For $i \geq 0$, given $\triangle A_{i} A_{i+1} A_{i+2}$, let A_{i+3} be the midpoint of $A_{i} A_{i+1}$ and let G_{i} be the centroid of $\triangle A_{i} A_{i+1} A_{i+2}$. Let point G be the limit of the sequence of points $\left\{G_{i}\right\}_{i=0}^{\infty}$. If the distance between G and G_{0} can be written as $\frac{a \sqrt{b}}{c}$, where a, b, c are positive integers such that a and c are relatively prime and b is not divisible by the square of any prime, find $a^{2}+b^{2}+c^{2}$.
3. Provided that $\left\{\alpha_{i}\right\}_{i=1}^{28}$ are the 28 distinct roots of $29 x^{28}+28 x^{27}+\ldots+2 x+1=0$, then the absolute value of $\sum_{i=1}^{28} \frac{1}{\left(1-\alpha_{i}\right)^{2}}$ can be written as $\frac{p}{q}$ for relatively prime positive integers p, q. Find $p+q$.
4. Patty is standing on a line of planks playing a game. Define a block to be a sequence of adjacent planks, such that both ends are not adjacent to any planks. Every minute, a plank chosen uniformly at random from the block that Patty is standing on disappears, and if Patty is standing on the plank, the game is over. Otherwise, Patty moves to a plank chosen uniformly at random within the block she is in; note that she could end up at the same plank from which she started. If the line of planks begins with n planks, then for sufficiently large n, the expected number of minutes Patty lasts until the game ends (where the first plank disappears a minute after the game starts) can be written as $P(1 / n) f(n)+Q(1 / n)$, where P, Q are polynomials and $f(n)=\sum_{i=1}^{n} \frac{1}{i}$. Find $P(2023)+Q(2023)$.
5. You're given the complex number $\omega=e^{2 i \pi / 13}+e^{10 i \pi / 13}+e^{16 i \pi / 13}+e^{24 i \pi / 13}$, and told it's a root of a unique monic cubic $x^{3}+a x^{2}+b x+c$, where a, b, c are integers. Determine the value of $a^{2}+b^{2}+c^{2}$.
6. A sequence of integers x_{1}, x_{2}, \ldots is double-dipped if $x_{n+2}=a x_{n+1}+b x_{n}$ for all $n \geq 1$ and some fixed integers a, b. Ri begins to form a sequence by randomly picking three integers from the set $\{1,2, \ldots, 12\}$, with replacement. It is known that if Ri adds a term by picking another element at random from $\{1,2, \ldots, 12\}$, there is at least a $\frac{1}{3}$ chance that his resulting four-term sequence forms the beginning of a double-dipped sequence. Given this, how many distinct three-term sequences could Ri have picked to begin with?
7. Pick x, y, z to be real numbers satisfying $(-x+y+z)^{2}-\frac{1}{3}=4(y-z)^{2},(x-y+z)^{2}-\frac{1}{4}=4(z-x)^{2}$, and $(x+y-z)^{2}-\frac{1}{5}=4(x-y)^{2}$. If the value of $x y+y z+z x$ can be written as $\frac{p}{q}$ for relatively prime positive integers p, q, find $p+q$.
8. Ryan Alweiss storms into the Fine Hall common room with a gigantic eraser and erases all integers n in the interval $[2,728]$ such that 3^{t} doesn't divide $n!$, where $t=\left\lceil\frac{n-3}{2}\right\rceil$.
Find the sum of the leftover integers in that interval modulo 1000.
9. In the complex plane, let z_{1}, z_{2}, z_{3} be the roots of the polynomial $p(x)=x^{3}-a x^{2}+b x-a b$. Find the number of integers n between 1 and 500 inclusive that are expressible as $z_{1}^{4}+z_{2}^{4}+z_{3}^{4}$ for some choice of positive integers a, b.
10. Let $\alpha, \beta, \gamma \in \mathbb{C}$ be the roots of the polynomial $x^{3}-3 x^{2}+3 x+7$. For any complex number z, let $f(z)$ be defined as follows:

$$
f(z)=|z-\alpha|+|z-\beta|+|z-\gamma|-2 \max _{w \in\{\alpha, \beta, \gamma\}}|z-w| .
$$

Let A be the area of the region bounded by the locus of all $z \in \mathbb{C}$ at which $f(z)$ attains its global minimum. Find $\lfloor A\rfloor$.
11. For the function

$$
g(a)=\max _{x \in \mathbb{R}}\left\{\cos x+\cos \left(x+\frac{\pi}{6}\right)+\cos \left(x+\frac{\pi}{4}\right)+\cos (x+a)\right\}
$$

let $b \in \mathbb{R}$ be the input that maximizes g. If $\cos ^{2} b=\frac{m+\sqrt{n}+\sqrt{p}-\sqrt{q}}{24}$ for positive integers m, n, p, q, find $m+n+p+q$.
12. Observe the set $S=\left\{(x, y) \in \mathbb{Z}^{2}:|x| \leq 5\right.$ and $\left.-10 \leq y \leq 0\right\}$. Find the number of points P in S such that there exists a tangent line from P to the parabola $y=x^{2}+1$ that can be written in the form $y=m x+b$, where m and b are integers.
13. Of all functions $h: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{\geq 0}$, choose one satisfying $h(a b)=a h(b)+b h(a)$ for all $a, b \in \mathbb{Z}_{>0}$ and $h(p)=p$ for all prime numbers p. Find the sum of all positive integers $n \leq 100$ such that $h(n)=4 n$.
14. Let $\triangle A B C$ be a triangle. Let Q be a point in the interior of $\triangle A B C$, and let X, Y, Z denote the feet of the altitudes from Q to sides $B C, C A, A B$, respectively. Suppose that $B C=15$, $\angle A B C=60^{\circ}, B Z=8, Z Q=6$, and $\angle Q C A=30^{\circ}$. Let line $Q X$ intersect the circumcircle of $\triangle X Y Z$ at the point $W \neq X$. If the ratio $\frac{W Y}{W Z}$ can be expressed as $\frac{p}{q}$ for relatively prime positive integers p, q, find $p+q$.
15. Subsets S of the first 35 positive integers $\{1,2,3, \ldots, 35\}$ are called contrived if S has size 4 and the sum of the squares of the elements of S is divisible by 7 . Find the number of contrived sets.

Team:

Write answers in table below:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8

Q9	Q10	Q11	Q12	Q13	Q14	Q15

Your input I (for bonus points):

