
Team Round Solutions

We put the questions in reverse-difficulty order, and hid a message in the first letter of each
problem. Happy April Fools!

1. Have b, c ∈ R satisfy b ∈ (0, 1) and c > 0, then let A,B denote the points of intersection of
the line y = bx+ c with y = |x|, and let O denote the origin of R2. Let f(b, c) denote the area

of triangle △OAB. Let k0 = 1
2022 , and for n ≥ 1 let kn = k2n−1. If the sum

∞∑
n=1

f(kn, kn−1)

can be written as p
q for relatively prime positive integers p, q, find the remainder when p+ q is

divided by 1000.

Proposed by Sunay Joshi

Answer: 484

Note that the points A,B have x-coordinates c
−1−b < 0 and c

1−b > 0. Thus the area of the right

triangle △OAB equals f(b, c) = 1
2 ·

c
1+b

√
2 · c

1−b

√
2 = c2

1−b2 . As a result, the desired sum equals
∞∑

n=1

k2n

1−k2n+1 . We claim that this sum equals k2

1−k2 . To see this, expand the term k2n

1−k2n+1 as a

geometric series to find
∞∑
j=0

kj2
n+1+2n . The exponents of this series contain all positive integers

m ≡ 2n (mod 2n+1). Since the set of positive integers m such that m ≡ 2n (mod 2n+1) for

some n ≥ 1 is exactly the set of even positive integers, our sum reduces to
∞∑
ℓ=1

k2ℓ = k2

1−k2 ,

as claimed. Plugging in k = 1
2022 , we find a sum of 1

4088483 . Thus p + q = 4088484 and our
remainder is 484.

2. A triangle △A0A1A2 in the plane has sidelengths A0A1 = 7, A1A2 = 8, A2A0 = 9. For
i ≥ 0, given △AiAi+1Ai+2, let Ai+3 be the midpoint of AiAi+1 and let Gi be the centroid of
△AiAi+1Ai+2. Let point G be the limit of the sequence of points {Gi}∞i=0. If the distance

between G and G0 can be written as a
√
b

c , where a, b, c are positive integers such that a and c
are relatively prime and b is not divisible by the square of any prime, find a2 + b2 + c2.

Proposed by Frank Lu

Answer: 422

To do this, we work with vectors. Let r⃗i be the vector between Gi and Gi+1. Then, notice
that, by definition, we have that Gi =

1
3 (Ai+Ai+1+Ai+2), meaning that r⃗i =

1
3 (Ai+3−Ai) =

1
6 (Ai+1−Ai). However, notice that we have that r⃗i =

1
6 (Ai+1−Ai) =

1
6 (

1
2 (Ai−1+Ai−2)−Ai)

= − 1
6 (Ai − Ai−1) − 1

12 (Ai−1 − Ai−2) = ⃗ri−1 − 1
2 ⃗ri−2. From here, we explicitly consider one

coordinate: notice then that we have the characteristic equation for, say, the x−coordinate,
r2 + r + 1

2 = 0, with the resulting solution for xi = Ari1 + Bri2. But from here, notice that

the solutions for r here are −1+i
2 and −1−i

2 . Hence, we see that the solutions for both x, y are

of this form. In particular, we see that r⃗k = a⃗(−1+i
2 )k + b⃗(−1−i

2 )k. Therefore, we see that the

vector between G0 and G is equal to
∞∑
k=0

a⃗(−1+i
2 )k + b⃗(−1−i

2 )k. But using geometric series, we

see that this is just equal to a⃗ 1
1−−1+i

2

+ b⃗ 1
1−−1−i

2

= a⃗ 2
3−i + b⃗ 2

3+i = a⃗3+i
5 + b⃗ 3−i

5 . We just need

to find what a⃗ and b⃗ are. Returning to our original triangle, position our triangle such that
A0 = (0, 0), A2 = (0, 9), and A1 has positive y−coordinate. Then, notice that we see that, if
A1 = (x, y), we have that x2 + y2 = 49, (9−x)2 + y2 = 64 means that −18x+81 = 15, or that

x = 11
3 , and y = 8

√
5

3 . But notice then that we have that a⃗+ b⃗ = r⃗0 and −1+i
2 a⃗+ −1−i

2 b⃗ = r⃗1.

Notice therefore that a⃗ 3+i
5 + b⃗ 3−i

5 = 2/5r⃗1 + 4/5r⃗0 Simplifying this we see that this is equal
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to 2
15 (A1 −A0 +

1
15 (A2 −A1) =

1
15 (A2 +A1 − 2A0). But this is then equal to 1

15 (
38
3 , 8

√
5

3 ). Our

final answer is therefore 1
45

√
382 + 320 = 1

45

√
1444 + 320 = 1

45

√
1764 = 42

45 = 14
15 = 14

√
1

15 , or
that we have 196 + 1 + 225 = 422.

3. Provided that {αi}28i=1 are the 28 distinct roots of 29x28 + 28x27 + . . .+ 2x+ 1 = 0, then the

absolute value of
28∑
i=1

1
(1−αi)2

can be written as p
q for relatively prime positive integers p, q.

Find p+ q.

Proposed by Ben Zenker

Answer: 275

Let n = 30, and let p(x) denote the given polynomial. Then 1
1−αi

are the roots of the function

p(x−1
x ). Therefore 1

1−αi
are the roots of the polynomial q(x) = xn−2p(x−1

x ), which can be
written as

q(x) =

n−2∑
k=0

(k + 1)(x− 1)kxn−2−k

Let the three leading terms of q(x) be denoted axn−2 + bxn−3 + cxn−4. By Vieta’s formulas,
the desired sum is given by (−b/a)2 − 2(c/a).

We claim that the coefficient of xn−2−m is given as (−1)m(m+1)
(

n
m+2

)
. To see this, note that

the coefficient of xn−2−m in (k+1)(x− 1)kxn−2−k is (k+1)(−1)m
(
k
m

)
= (−1)m(m+1)

(
k+1
m+1

)
by the Binomial Theorem. Summing over m ≤ k ≤ n− 2, we find (−1)m(m+ 1)

(
n

m+2

)
by the

Hockey-Stick Identity, as claimed.

It follows that a =
(
n
2

)
, b = −2

(
n
3

)
, and c = 3

(
n
4

)
. Thus b/a = −2n(n−1)(n−2)/6

n(n−1)/2 = − 2
3 (n − 2)

and c/a = 3n(n−1)(n−2)(n−3)/24
n(n−1)/2 = 1

4 (n − 2)(n − 3). The desired sum is therefore 4
9 (n − 2)2 −

1
2 (n−2)(n−3), which reduces to 1

18 (n−2)[(8n−16)−(9n−27)] = 1
18 (n−2)(11−n). Plugging

in n = 30, the sum of squares becomes 1
18 (28)(−19) = − 266

9 . Thus p = 266, q = 9 and our
answer is 266 + 9 = 275.

4. Patty is standing on a line of planks playing a game. Define a block to be a sequence of
adjacent planks, such that both ends are not adjacent to any planks. Every minute, a plank
chosen uniformly at random from the block that Patty is standing on disappears, and if Patty
is standing on the plank, the game is over. Otherwise, Patty moves to a plank chosen uniformly
at random within the block she is in; note that she could end up at the same plank from which
she started. If the line of planks begins with n planks, then for sufficiently large n, the expected
number of minutes Patty lasts until the game ends (where the first plank disappears a minute
after the game starts) can be written as P (1/n)f(n) + Q(1/n), where P,Q are polynomials
and f(n) =

∑n
i=1

1
i . Find P (2023) +Q(2023).

Proposed by Frank Lu

Answer: 4045

Let E(n) be the expected value given that the block that Masie is standing on has length n.
Then, notice that if the ith plank from the left disappears, then the expected number of minutes
that Masie lasts afterwards is equal to i−1

n E(i)+n−i
n E(n−i); therefore, we see that we have that

E(n) = 1
n

∑n
i=1(

i−1
n E(i)+n−i

n E(n−i)+1). Therefore, we see that n2E(n) = n2+
∑n−1

j=0 2jE(j).

In particular, we therefore see that (n + 1)2E(n + 1) − n2E(n) = 2nE(n) + 2n + 1. Now, let

F (n) = nE(n)
n+1 ; it therefore follows that F (n+ 1)− F (n) = 2n+1

(n+1)(n+2) =
3

n+2 − 1
n+1 . However,

we also know that E(1) = 1, so F (1) = 1
2 . It therefore follows that F (n) = 1

2+
n−1∑
j=1

3
n+2−

1
n+1 =

2



1
2 + 3

n+1 − 1
2

n∑
j=3

2
i = 3

n+1 + 2f(n) − 3. But this means then that E(n) = ((n + 1)/n)( 3
n+1 +

2f(n)− 3) = (2+ 2/n)f(n) + 3/n− 3(n+1)/n = (2+ 2/n)f(n)− 3. But therefore we see that
P (x) = 2+2x,Q(x) = −3, and so therefore we have that our answer is 2+2 · 2023− 3 = 4045.

5. You’re given the complex number ω = e2iπ/13 + e10iπ/13 + e16iπ/13 + e24iπ/13, and told it’s a
root of a unique monic cubic x3 + ax2 + bx+ c, where a, b, c are integers. Determine the value
of a2 + b2 + c2.

Proposed by Frank Lu

Answer: 18

Observe first that the exponents of ω are precisely those of the form 2πir/13, where r is a
cubic residue (mod 13). Indeed, notice that the values of r we have are r = 1, 5 ≡ −8 = (−2)3

(mod 13), 8 = 23, and −1 = (−1)3. Given as well the identity that
12∑
j=1

e2πij/13 = −1, this

suggests that the other two roots of this cubic are going to be the following complex numbers:

ω1 = e4iπ/13 + e20iπ/13 + e32iπ/13 + e48iπ/13,

ω2 = e8iπ/13 + e40iπ/13 + e64iπ/13 + e96iπ/13,

which were obtained from ω by multiplying the cubic residues by two and four. These 12
exponents, along with 0, are 2πi/13 times a complete residue class (mod 13). (This can
actually be proven with Galois theory, but this is not important for the solution itself).

We now try finding the coefficients by computing ω1+ω2+ω, ω1ω+ω2ω+ω1ω2, ωω1ω2, which
are obtained by Vieta’s formulas. The first, as we mentioned before, is −1.

For the other two, we analyze these terms by substituting the sums in and expanding out the
products. For the second product, for instance, notice that we get 3 · 4 · 4 = 48 terms. We
now consider the number of these terms that are equal to e2πir/13 for each residue r. Notice
that this is equal to the number of cubic residues s, t so that s + 2t ≡ r (mod 13) plus the
number of cubic residues s, t so that s+ 4t ≡ r (mod 13) plus the number where 2s+ 4t ≡ r
(mod 13). Each of these are obtained just from considering what it means for a term e2πir/13

to be obtained from one of the products.

However, we claim that we can biject these solutions together. To see this, we can combine
these equations into the form s2j+t2j+1 = r, where s, t are cubic residues and j ∈ {0, 1, 2}. It’s
not hard to see then that (s, t, j) is a solution for r = 1 if and only if (r′s, r′t, j) is a solution
if r′ is a nonzero cubic residue, and that this is a bijection between solutions. If r′ is twice a
cubic residue, notice that (s, t, j) is a solution for r = 1 if and only if (r′s/2, r′t/2, j + 1) is a
solution if j = 0, 1, and (4r′s, 4r′t, 0) if j = 2. A similar procedure works for four times a cubic
residue. This means that the number of times that e2πir/13 appears for each nonzero residue
r is the same. And as there are four solutions for r = 1, namely 1 = (−1) + 2 ∗ (1), 2 ∗ (5) +
4 ∗ (1), 4 ∗ (8) + 8 ∗ 1, 4 ∗ (−1) + 8 ∗ (−1), it follows there are 4 copies of each residue, which
means that this pairwise product equals −4.

Finally, we consider ωω1ω2. Notice that again, the number of terms with residue r is the
number of solutions to r = s+2t+4u, where s, t, u are cubic residues. Here, we see again that
all nonzero r have the same number of solutions. We just need to find the number of solutions
to s + 2t + 4u ≡ 0 (mod 13). Notice that by scaling up s we may assume that s = 1; from
here notice that by going through the values for t the only solution we have are (1, 8, 12). This
means there are 4 solutions for r = 0 and 64−4

12 = 5 for all nonzero residues.

Therefore, we see that the value of this product is equal to 4−5, as the sum of this exponential
for nonzero residues is equal to −1. Our polynomial is thus x3+x2−4x+1, and so our answer
is 1 + 16 + 1 = 18.
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6. A sequence of integers x1, x2, ... is double-dipped if xn+2 = axn+1 + bxn for all n ≥ 1 and
some fixed integers a, b. Ri begins to form a sequence by randomly picking three integers from
the set {1, 2, ..., 12}, with replacement. It is known that if Ri adds a term by picking another
element at random from {1, 2, ..., 12}, there is at least a 1

3 chance that his resulting four-term
sequence forms the beginning of a double-dipped sequence. Given this, how many distinct
three-term sequences could Ri have picked to begin with?

Proposed by Austen Mazenko

Answer: 84

The main idea is that for a sequence a1, a2, a3, a fourth term a4 is double-dipped only when
a4 is a particular residue modulo |a22 − a1a3|. Thus, for there to be at least 4 such values of
a4, this absolute value must equal 1, 2, or 3; this gives casework.

If x2
2 ± 1 = x1x3: (double at end to reverse them) (1, 1, 2), (1, 2, 3), (1, 2, 5), (1, 3, 8), (2, 3, 4),

(1, 3, 10), (2, 3, 5), (3, 4, 5), (2, 5, 12), (3, 5, 8), (4, 5, 6), (5, 6, 7), (6, 7, 8), (4, 7, 12), (5, 7, 10),
(7, 8, 9), (8, 9, 10), (9, 10, 11), (10, 11, 12).

If x2
2 ± 2 = x1x3: (double at end to reverse them) (1, 1, 3), (1, 2, 2), (1, 2, 6), (2, 2, 3), (1, 3, 7),

(1, 3, 11), (2, 4, 7), (2, 4, 9), (3, 4, 6), (3, 5, 9), (6, 8, 11).

If x2
2 ± 3 = x1x3: (double at end to reverse them) (1, 1, 4), (2, 1, 2), (1, 2, 1), (1, 2, 7), (1, 3, 6),

(2, 3, 3), (1, 3, 12), (2, 3, 6), (3, 3, 4), (2, 5, 11), (4, 5, 7), (3, 6, 11), (7, 9, 12).

In sum, we get 84 (note that (2, 1, 2) and (1, 2, 1) in the last case are irreversible).

7. Pick x, y, z to be real numbers satisfying (−x+y+z)2− 1
3 = 4(y−z)2, (x−y+z)2− 1

4 = 4(z−x)2,
and (x+ y− z)2− 1

5 = 4(x− y)2. If the value of xy+ yz+ zx can be written as p
q for relatively

prime positive integers p, q, find p+ q.

Proposed by Sunay Joshi

Answer: 1727

For convenience, let A = 1
3 , B = 1

4 , and C = 1
5 . Isolating the constant on the right-hand side of

the first equation, we find (−x+y+z)2−4(y−z)2 = A. By difference of squares, this becomes
(−x+3y− z)(−x− y+3z) = A. Consider the substitution M = 3x− y− z, N = −x+3y− z,
P = −x− y+3z. Then our system reduces to NP = A, MP = B, MN = C. Multiplying the
three together and taking the square root, we find MNP = s

√
ABC, where s ∈ {±1}. Hence

M = s
√
ABC 1

A , N = s
√
ABC 1

B , P = s
√
ABC 1

C . By our definition of M,N,P , we also have

M +N +P = x+ y+ z, hence x = 2M+N+P
4 = s

√
ABC
4 ( 2

A + 1
B + 1

C ) = 15 s
√
ABC
4 and similarly

y = 16 s
√
ABC
4 and z = 17 s

√
ABC
4 . Since s2 = 1, it follows that the desired quantity equals

xy + yz + zx =
s2ABC

16
(15 · 16 + 16 · 17 + 17 · 15) = 3 · 162 − 1

16 · 60
=

767

960

Hence our answer is 767 + 960 = 1727.

8. Ryan Alweiss storms into the Fine Hall common room with a gigantic eraser and erases all
integers n in the interval [2, 728] such that 3t doesn’t divide n!, where t = ⌈n−3

2 ⌉.
Find the sum of the leftover integers in that interval modulo 1000.

Proposed by Sunay Joshi

Answer: 11

We claim that the sum of the integers n in the interval [2, 3k − 1] satisfying 3t|n! is 1
2 (k

2 +

5k) · 3k−1
2 − 1. To see this, first consider the condition 3t|n!. The highest power of a prime

p dividing n! is precisely νp(n) =
n−sp(n)

p−1 , where sp(n) denotes the sum of the digits of n in
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base p. Therefore t ≤ ν3(n) is equivalent to ⌈n−3
2 ⌉ ≤ n−s3(n)

2 . We split into two cases based

on the parity of n. For n odd, this is n−3
2 ≤ n−s3(n)

2 , i.e. s3(n) ≤ 3. For n even, this is
n−2
2 ≤ n−s3(n)

2 , i.e. s3(n) ≤ 2. In the former case, it follows that the ternary representation
of n must consist of either (a) one 1, (b) one 2 and one 1, or (c) three 1s. In the latter case,
the ternary representation of n must consist of (d) one 2 or (e) two 1s. We now count the
contribution of a given digit in the five subcases (a) through (e), where we include n = 1 among
the valid numbers for convenience. (We will subtract n = 1 at the end.) One can see that the
contribution is 1 for (a), 2(k−1)+(k−1) = 3(k−1) for (b),

(
k−1
2

)
for (c), 2 for (d), and (k−1) for

(e). Thus each digit 3j (0 ≤ j ≤ k−1) contributes 1+3(k−1)+
(
k−1
2

)
+2+(k−1) = 1

2 (k
2+5k)

times its value, yielding an answer of 1
2 (k

2 +5k) · 3k−1
2 − 1, where we subtract one because we

must ignore n = 1. Plugging in k = 6, we find a total of 12011 ≡ 11 (mod 1000), our answer.

9. In the complex plane, let z1, z2, z3 be the roots of the polynomial p(x) = x3 − ax2 + bx− ab.
Find the number of integers n between 1 and 500 inclusive that are expressible as z41 + z42 + z43
for some choice of positive integers a, b.

Proposed by Sunay Joshi

Answer: 51

For all j ∈ {1, 2, 3}, we have z3j = az2j−bzj+ab. Multiplying by zj , we find z4j = (a2−b)z2j+a2b.

Summing over j and using the fact that
∑

z2j = a2 − 2b, we find
∑

z4j = a4 + 2b2. In other

words, it suffices to find the number of n ∈ [1, 500] of the form a4 + 2b2 for a, b ≥ 1. We first
count the total number of pairs (a, b) satisfying the condition.

a = 1: this implies 2b2 ≤ 500− 14, hence b ≤ 15. This yields 15 solutions.

a = 2: this implies 2b2 ≤ 500− 24, hence b ≤ 15. This yields 15 solutions.

a = 3: this implies 2b2 ≤ 500− 34, hence b ≤ 14. This yields 14 solutions.

a = 4: this implies 2b2 ≤ 500− 44, hence b ≤ 11. This yields 11 solutions.

Next, we eliminate duplicates. Note that if a4 +2b2 = c4 +2d2, then a ≡ b (mod 2). Hence it
suffices to check the cases (a, c) = (1, 3) and (a, c) = (2, 4).

If (a, c) = (1, 3), then 14 + 2b2 = 34 + 2d2, implying b2 − d2 = 40. Thus the pair (b− d, b+ d)
can either be (2, 20) or (4, 10). These yield b = 11 and b = 7 respectively, which correspond to
the duplicate solutions n = 243 and n = 99.

If (a, c) = (2, 4), then 24 + 2b2 = 44 + 2d2, implying b2 − d2 = 24. Thus the pair (b− d, b+ d)
can either be (2, 12) or (4, 6). These yield b = 7 and b = 5 respectively, which correspond to
the duplicate solutions n = 114 and n = 66.

Subtracting the 4 duplicates from our original count of 55 = 15 + 15 + 14 + 11, we find our
answer of 51.

10. Let α, β, γ ∈ C be the roots of the polynomial x3 − 3x2 + 3x+ 7. For any complex number z,
let f(z) be defined as follows:

f(z) = |z − α|+ |z − β|+ |z − γ| − 2 max
w∈{α,β,γ}

|z − w|.

Let A be the area of the region bounded by the locus of all z ∈ C at which f(z) attains its
global minimum. Find ⌊A⌋.
Proposed by Oliver Thakar

Answer: 12

The roots α, β, and γ are −1, 2±
√
3i, which form an equilateral triangle in the complex plane.

f(z) is simply the sum of the smaller two of the three distances between z and the vertices of

5



this triangle minus the largest of the distances. Ptolemy’s inequality tells us that f(z) ≥ 0 and
it equals zero only when z lies on the circumcircle of the triangle with vertices α, β, γ; clearly,
the circumcenter of this triangle is at z = 1, so the circumradius is 2. The area of the circle is
π · 22, which has floor 12.

11. For the function

g(a) = max
x∈R

{
cosx+ cos

(
x+

π

6

)
+ cos

(
x+

π

4

)
+ cos(x+ a)

}
,

let b ∈ R be the input that maximizes g. If cos2 b =
m+

√
n+

√
p−√

q

24 for positive integers
m,n, p, q, find m+ n+ p+ q.

Proposed by Ben Zenker

Answer: 54

By the addition formula for cosine, we may rewrite f(x) as

f(x) = (1 + cos
π

6
+ cos

π

4
+ cos a) cosx− (sin

π

6
+ sin

π

4
+ sin a) sinx = A sinx−B sinx

Factoring out
√
A2 +B2, we find f(x) =

√
A2 +B2 cos(x − θ), where cos θ = A√

A2+B2
. It

follows that g(a) =
√
A2 +B2 and it suffices to maximize A2+B2. Expanding this expression,

we find
g(a) = (1 + cos

π

6
+ cos

π

4
+ cos a)2 + (sin

π

6
+ sin

π

4
+ sin a)2

= (α+ cos a)2 + (β + sin a)2 = (α2 + β2 + 1) + (2α cos a+ 2β sin a)

= (α2 + β2 + 1) + 2
√
α2 + β2 cos(a− φ)

where α = 2+
√
3+

√
2

2 , β = 1+
√
2

2 , and cosφ = α√
α2+β2

. It follows that a maximizes g iff

a = φ + 2πk, k ∈ Z, where φ is any angle satisfying cosφ = α√
α2+β2

. Hence the desired

quantity cos2 a equals cos2 φ, which equals

cos2 φ =
1
4 (2 +

√
2 +

√
3)2

1
2 (
√
6 + 2

√
3 + 3

√
2 + 6)

=
(2 +

√
2 +

√
3)2

2(2 +
√
2)(3 +

√
3)

=
18 + 2

√
3 +

√
6− 3

√
2

24

Thus m = 18, n = 12, p = 6, q = 18 and our answer is 18 + 12 + 6 + 18 = 54.

12. Observe the set S = {(x, y) ∈ Z2 : |x| ≤ 5 and − 10 ≤ y ≤ 0}. Find the number of points P in
S such that there exists a tangent line from P to the parabola y = x2 + 1 that can be written
in the form y = mx+ b, where m and b are integers.

Proposed by Frank Lu

Answer: 15

First, suppose that the line y = mx+b is tangent to the parabola. Then, it follows that x2+1 =
mx+b has exactly one solution, which in particular requires us to have that x2−mx+1−b = 0

to have one solution. But from completing the square, this is only possible if 1 − b = m2

4 , or

that m = 2
√
1− b. For m, b to be integers, notice that we must have b of the form 1− k2, so

m = 2k; if m were odd, then 1− b, ergo b, would not be an integer.

Thus, our lines are of the form y = 2kx + (1 − k2) for some integer k ∈ Z. We now seek
to classify the points (x, y) that lie on a line of this form. Given such a point P in our set,
we solve for k. Notice that solving for k here yields us with k2 − 1 − 2kx + y = 0, or that

6



k = x ±
√
x2 + 1− y. We require this to be an integer, and we are picking x, y to also be

integers. Therefore, we must have that y = x2 + 1 − l2 for some integer l, whereby we have
that k = x± l is an integer, given x is an integer.

To count these points: notice that x2 + 1 takes on the values 1, 2, 5, 10, 17, 26, and that the
negative squares are 0,−1,−4,−9,−16,−25,−36. We now wish to count how many pairs (x, l)
will yield a y that lies between −10 and 0. For x2+1 = 1, these are −1,−4,−9, so there are 3.
Repeating this procedure, we find that for 2, 5, 10, 17, 26 that there are 2, 1, 1, 1, 1, respectively.
So the number of pairs (x, y) is thus 3 + 2 · (2 + 1 + 1 + 1 + 1) = 3 + 12 = 15.

13. Of all functions h : Z>0 → Z≥0, choose one satisfying h(ab) = ah(b) + bh(a) for all a, b ∈ Z>0

and h(p) = p for all prime numbers p. Find the sum of all positive integers n ≤ 100 such that
h(n) = 4n.

Proposed by Sunay Joshi

Answer: 729

Setting a = b = 1 into the functional equation, we find h(1) = 0 ̸= 4 · 1. Thus, we may restrict
our attention to n > 1.

We now show that if n =
∏k

i=1 p
ei
i > 1, then h(n) = (

∑k
i=1 ei)n.

To see this, we proceed by induction on n > 1. The base case, n = 2, is evident. Suppose the
result holds for all numbers less than n; we show the result for n. If n is prime, then h(n) = n

by assumption, as desired. Otherwise, we may write the prime factorization n =
∏k

i=1 p
ei
i ,

where k > 1 and ei > 1 for all i. In this case, we may set a = p1, b = n/p1 into the functional
equation to find

h(n) = p1h

(
n

p1

)
+

n

p1
h(p1)

As 1 < n
p1

< n by assumption, we may apply the inductive hypothesis to find

h(n) = p1 ·
( k∑

i=1

ei − 1

)
n

p1
+

n

p1
· p1 =

( k∑
i=1

ei − 1

)
n+ n =

( k∑
i=1

ei

)
n,

completing the induction.

To solve h(n) = 4n for n =
∏k

i=1 p
ei
i , it follows that we must find all 2 ≤ n ≤ 100 for which∑k

i=1 ei = 4. These correspond to n with the prime factorizations {p4, p3q, p2q2, p2qr, pqrs}.
Considering each of these cases in turn quickly yields the list

n ∈ {24, 34, 23 · 3, 23 · 5, 23 · 7, 23 · 11, 33 · 2, 22 · 32, 22 · 52, 22 · 3 · 5, 22 · 3 · 7, 32 · 2 · 5}

= {16, 81, 24, 40, 56, 88, 54, 36, 100, 60, 84, 90},

with sum 729.

Remark: in number theory, the function h(n)
n =

∑
i ei is denoted Ω(n), and it counts the

number of prime factors of n with multiplicity. Numbers with Ω(n) = k are called k-almost
primes.

14. Let △ABC be a triangle. Let Q be a point in the interior of △ABC, and let X,Y, Z denote
the feet of the altitudes from Q to sides BC, CA, AB, respectively. Suppose that BC = 15,
∠ABC = 60◦, BZ = 8, ZQ = 6, and ∠QCA = 30◦. Let line QX intersect the circumcircle
of △XY Z at the point W ̸= X. If the ratio WY

WZ can be expressed as p
q for relatively prime

positive integers p, q, find p+ q.

Proposed by Sunay Joshi
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Answer: 11

Let θ = ∠WY Z and let φ = ∠WZY . By the Extended Law of Sines, WY/WZ = sinφ/ sin θ.
Since WYXZ is cyclic, ∠WXZ = θ, and since QXBZ is cyclic, ∠WXZ = ∠QBZ. Hence θ =
∠QBZ. Since △QBZ is right with sidelengths 6, 8, 10, we have sin θ = 3/5. Similarly, since
∠WZY = ∠WXY = ∠QCY = 30◦, sinφ = 1/2. The desired ratio is therefore (1/2)/(3/5) =
5/6 and our answer is 5 + 6 = 11.

15. Subsets S of the first 35 positive integers {1, 2, 3, ..., 35} are called contrived if S has size 4 and
the sum of the squares of the elements of S is divisible by 7. Find the number of contrived
sets.

Proposed by Sunay Joshi

Answer: 8605

There are four distinct quadratic residues modulo 7, namely 0, 1, 2, 4, with 02 ≡ 0, 12, 62 ≡ 1,
32, 42 ≡ 2, and 22, 52 ≡ 4. There are five 4-tuples (a1, a2, a3, a4) with a1 < a2 < a3 < a4
and ai ∈ {0, 1, 2, 4} satisfying a1 + a2 + a3 + a4 ≡ 0, namely (0, 0, 0, 0), (0, 1, 2, 4), (1, 1, 1, 4),
(1, 2, 2, 2), and (2, 4, 4, 4). Among the first 35 positive integers, there are 5 numbers x with
x2 ≡ 0, 10 numbers with x2 ≡ 1, 10 numbers with x2 ≡ 2, and 10 numbers with x2 ≡ 4. Thus

each 4-tuple corresponds to
(
5
4

)
,
(
5
1

)(
10
1

)3
,
(
10
3

)(
10
1

)
,
(
10
3

)(
10
1

)
, and

(
10
3

)(
10
1

)
subsets, respectively.

Our answer is therefore 5 + 5 · 103 + 120 · 10 + 120 · 10 + 120 · 10 = 8605.
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