Team Round Solutions

We put the questions in reverse-difficulty order, and hid a message in the first letter of each problem. Happy April Fools!

1. Have $b, c \in \mathbb{R}$ satisfy $b \in(0,1)$ and $c>0$, then let A, B denote the points of intersection of the line $y=b x+c$ with $y=|x|$, and let O denote the origin of \mathbb{R}^{2}. Let $f(b, c)$ denote the area of triangle $\triangle O A B$. Let $k_{0}=\frac{1}{2022}$, and for $n \geq 1$ let $k_{n}=k_{n-1}^{2}$. If the sum $\sum_{n=1}^{\infty} f\left(k_{n}, k_{n-1}\right)$ can be written as $\frac{p}{q}$ for relatively prime positive integers p, q, find the remainder when $p+q$ is divided by 1000.

Proposed by Sunay Joshi
Answer: 484
Note that the points A, B have x-coordinates $\frac{c}{-1-b}<0$ and $\frac{c}{1-b}>0$. Thus the area of the right triangle $\triangle O A B$ equals $f(b, c)=\frac{1}{2} \cdot \frac{c}{1+b} \sqrt{2} \cdot \frac{c}{1-b} \sqrt{2}=\frac{c^{2}}{1-b^{2}}$. As a result, the desired sum equals $\sum_{n=1}^{\infty} \frac{k^{2^{n}}}{1-k^{2^{n+1}}}$. We claim that this sum equals $\frac{k^{2}}{1-k^{2}}$. To see this, expand the term $\frac{k^{2^{n}}}{1-k^{2 n+1}}$ as a geometric series to find $\sum_{j=0}^{\infty} k^{j 2^{n+1}+2^{n}}$. The exponents of this series contain all positive integers $m \equiv 2^{n}\left(\bmod 2^{n+1}\right)$. Since the set of positive integers m such that $m \equiv 2^{n}\left(\bmod 2^{n+1}\right)$ for some $n \geq 1$ is exactly the set of even positive integers, our sum reduces to $\sum_{\ell=1}^{\infty} k^{2 \ell}=\frac{k^{2}}{1-k^{2}}$, as claimed. Plugging in $k=\frac{1}{2022}$, we find a sum of $\frac{1}{4088483}$. Thus $p+q=4088484$ and our remainder is 484.
2. A triangle $\triangle A_{0} A_{1} A_{2}$ in the plane has sidelengths $A_{0} A_{1}=7, A_{1} A_{2}=8, A_{2} A_{0}=9$. For $i \geq 0$, given $\triangle A_{i} A_{i+1} A_{i+2}$, let A_{i+3} be the midpoint of $A_{i} A_{i+1}$ and let G_{i} be the centroid of $\triangle A_{i} A_{i+1} A_{i+2}$. Let point G be the limit of the sequence of points $\left\{G_{i}\right\}_{i=0}^{\infty}$. If the distance between G and G_{0} can be written as $\frac{a \sqrt{b}}{c}$, where a, b, c are positive integers such that a and c are relatively prime and b is not divisible by the square of any prime, find $a^{2}+b^{2}+c^{2}$.

Proposed by Frank Lu

Answer: 422
To do this, we work with vectors. Let $\overrightarrow{r_{i}}$ be the vector between G_{i} and G_{i+1}. Then, notice that, by definition, we have that $G_{i}=\frac{1}{3}\left(A_{i}+A_{i+1}+A_{i+2}\right)$, meaning that $\overrightarrow{r_{i}}=\frac{1}{3}\left(A_{i+3}-A_{i}\right)=$ $\frac{1}{6}\left(A_{i+1}-A_{i}\right)$. However, notice that we have that $\overrightarrow{r_{i}}=\frac{1}{6}\left(A_{i+1}-A_{i}\right)=\frac{1}{6}\left(\frac{1}{2}\left(A_{i-1}+A_{i-2}\right)-A_{i}\right)$ $=-\frac{1}{6}\left(A_{i}-A_{i-1}\right)-\frac{1}{12}\left(A_{i-1}-A_{i-2}\right)=r_{i-1}-\frac{1}{2} r_{i-2}$. From here, we explicitly consider one coordinate: notice then that we have the characteristic equation for, say, the x-coordinate, $r^{2}+r+\frac{1}{2}=0$, with the resulting solution for $x_{i}=A r_{1}^{i}+B r_{2}^{i}$. But from here, notice that the solutions for r here are $\frac{-1+i}{2}$ and $\frac{-1-i}{2}$. Hence, we see that the solutions for both x, y are of this form. In particular, we see that $\overrightarrow{r_{k}}=\vec{a}\left(\frac{-1+i}{2}\right)^{k}+\vec{b}\left(\frac{-1-i}{2}\right)^{k}$. Therefore, we see that the vector between G_{0} and G is equal to $\sum_{k=0}^{\infty} \vec{a}\left(\frac{-1+i}{2}\right)^{k}+\vec{b}\left(\frac{-1-i}{2}\right)^{k}$. But using geometric series, we see that this is just equal to $\vec{a} \frac{1}{1-\frac{1+i}{2}}+\vec{b} \frac{1}{1-\frac{-1-i}{2}}=\vec{a} \frac{2}{3-i}+\vec{b} \frac{2}{3+i}=\vec{a} \frac{3+i}{5}+\vec{b} \frac{3-i}{5}$. We just need to find what \vec{a} and \vec{b} are. Returning to our original triangle, position our triangle such that $A_{0}=(0,0), A_{2}=(0,9)$, and A_{1} has positive y-coordinate. Then, notice that we see that, if $A_{1}=(x, y)$, we have that $x^{2}+y^{2}=49,(9-x)^{2}+y^{2}=64$ means that $-18 x+81=15$, or that $x=\frac{11}{3}$, and $y=\frac{8 \sqrt{5}}{3}$. But notice then that we have that $\vec{a}+\vec{b}=\overrightarrow{r_{0}}$ and $\frac{-1+i}{2} \vec{a}+\frac{-1-i}{2} \vec{b}=\overrightarrow{r_{1}}$. Notice therefore that $\vec{a} \frac{3+i}{5}+\vec{b} \frac{3-i}{5}=2 / 5 \overrightarrow{r_{1}}+4 / 5 \overrightarrow{r_{0}}$ Simplifying this we see that this is equal
to $\frac{2}{15}\left(A_{1}-A_{0}+\frac{1}{15}\left(A_{2}-A_{1}\right)=\frac{1}{15}\left(A_{2}+A_{1}-2 A_{0}\right)\right.$. But this is then equal to $\frac{1}{15}\left(\frac{38}{3}, \frac{8 \sqrt{5}}{3}\right)$. Our final answer is therefore $\frac{1}{45} \sqrt{38^{2}+320}=\frac{1}{45} \sqrt{1444+320}=\frac{1}{45} \sqrt{1764}=\frac{42}{45}=\frac{14}{15}=\frac{14 \sqrt{1}}{15}$, or that we have $196+1+225=422$.
3. Provided that $\left\{\alpha_{i}\right\}_{i=1}^{28}$ are the 28 distinct roots of $29 x^{28}+28 x^{27}+\ldots+2 x+1=0$, then the absolute value of $\sum_{i=1}^{28} \frac{1}{\left(1-\alpha_{i}\right)^{2}}$ can be written as $\frac{p}{q}$ for relatively prime positive integers p, q. Find $p+q$.

Proposed by Ben Zenker

Answer: 275
Let $n=30$, and let $p(x)$ denote the given polynomial. Then $\frac{1}{1-\alpha_{i}}$ are the roots of the function $p\left(\frac{x-1}{x}\right)$. Therefore $\frac{1}{1-\alpha_{i}}$ are the roots of the polynomial $q(x)=x^{n-2} p\left(\frac{x-1}{x}\right)$, which can be written as

$$
q(x)=\sum_{k=0}^{n-2}(k+1)(x-1)^{k} x^{n-2-k}
$$

Let the three leading terms of $q(x)$ be denoted $a x^{n-2}+b x^{n-3}+c x^{n-4}$. By Vieta's formulas, the desired sum is given by $(-b / a)^{2}-2(c / a)$.
We claim that the coefficient of x^{n-2-m} is given as $(-1)^{m}(m+1)\binom{n}{m+2}$. To see this, note that the coefficient of x^{n-2-m} in $(k+1)(x-1)^{k} x^{n-2-k}$ is $(k+1)(-1)^{m}\binom{k}{m}=(-1)^{m}(m+1)\binom{k+1}{m+1}$ by the Binomial Theorem. Summing over $m \leq k \leq n-2$, we find $(-1)^{m}(m+1)\binom{n}{m+2}$ by the Hockey-Stick Identity, as claimed.
It follows that $a=\binom{n}{2}, b=-2\binom{n}{3}$, and $c=3\binom{n}{4}$. Thus $b / a=\frac{-2 n(n-1)(n-2) / 6}{n(n-1) / 2}=-\frac{2}{3}(n-2)$ and $c / a=\frac{3 n(n-1)(n-2)(n-3) / 24}{n(n-1) / 2}=\frac{1}{4}(n-2)(n-3)$. The desired sum is therefore $\frac{4}{9}(n-2)^{2}-$ $\frac{1}{2}(n-2)(n-3)$, which reduces to $\frac{1}{18}(n-2)[(8 n-16)-(9 n-27)]=\frac{1}{18}(n-2)(11-n)$. Plugging in $n=30$, the sum of squares becomes $\frac{1}{18}(28)(-19)=-\frac{266}{9}$. Thus $p=266, q=9$ and our answer is $266+9=275$.
4. Patty is standing on a line of planks playing a game. Define a block to be a sequence of adjacent planks, such that both ends are not adjacent to any planks. Every minute, a plank chosen uniformly at random from the block that Patty is standing on disappears, and if Patty is standing on the plank, the game is over. Otherwise, Patty moves to a plank chosen uniformly at random within the block she is in; note that she could end up at the same plank from which she started. If the line of planks begins with n planks, then for sufficiently large n, the expected number of minutes Patty lasts until the game ends (where the first plank disappears a minute after the game starts) can be written as $P(1 / n) f(n)+Q(1 / n)$, where P, Q are polynomials and $f(n)=\sum_{i=1}^{n} \frac{1}{i}$. Find $P(2023)+Q(2023)$.
Proposed by Frank Lu
Answer: 4045
Let $E(n)$ be the expected value given that the block that Masie is standing on has length n. Then, notice that if the i th plank from the left disappears, then the expected number of minutes that Masie lasts afterwards is equal to $\frac{i-1}{n} E(i)+\frac{n-i}{n} E(n-i)$; therefore, we see that we have that $E(n)=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{i-1}{n} E(i)+\frac{n-i}{n} E(n-i)+1\right)$. Therefore, we see that $n^{2} E(n)=n^{2}+\sum_{j=0}^{n-1} 2 j E(j)$. In particular, we therefore see that $(n+1)^{2} E(n+1)-n^{2} E(n)=2 n E(n)+2 n+1$. Now, let $F(n)=\frac{n E(n)}{n+1}$; it therefore follows that $F(n+1)-F(n)=\frac{2 n+1}{(n+1)(n+2)}=\frac{3}{n+2}-\frac{1}{n+1}$. However, we also know that $E(1)=1$, so $F(1)=\frac{1}{2}$. It therefore follows that $F(n)=\frac{1}{2}+\sum_{j=1}^{n-1} \frac{3}{n+2}-\frac{1}{n+1}=$

$P \cup M \therefore C$

$\frac{1}{2}+\frac{3}{n+1}-\frac{1}{2} \sum_{j=3}^{n} \frac{2}{i}=\frac{3}{n+1}+2 f(n)-3$. But this means then that $E(n)=((n+1) / n)\left(\frac{3}{n+1}+\right.$ $2 f(n)-3)=(2+2 / n) f(n)+3 / n-3(n+1) / n=(2+2 / n) f(n)-3$. But therefore we see that $P(x)=2+2 x, Q(x)=-3$, and so therefore we have that our answer is $2+2 \cdot 2023-3=4045$.
5. You're given the complex number $\omega=e^{2 i \pi / 13}+e^{10 i \pi / 13}+e^{16 i \pi / 13}+e^{24 i \pi / 13}$, and told it's a root of a unique monic cubic $x^{3}+a x^{2}+b x+c$, where a, b, c are integers. Determine the value of $a^{2}+b^{2}+c^{2}$.
Proposed by Frank Lu
Answer: 18
Observe first that the exponents of ω are precisely those of the form $2 \pi i r / 13$, where r is a cubic residue $(\bmod 13)$. Indeed, notice that the values of r we have are $r=1,5 \equiv-8=(-2)^{3}$ $(\bmod 13), 8=2^{3}$, and $-1=(-1)^{3}$. Given as well the identity that $\sum_{j=1}^{12} e^{2 \pi i j / 13}=-1$, this suggests that the other two roots of this cubic are going to be the following complex numbers:

$$
\begin{aligned}
& \omega_{1}=e^{4 i \pi / 13}+e^{20 i \pi / 13}+e^{32 i \pi / 13}+e^{48 i \pi / 13} \\
& \omega_{2}=e^{8 i \pi / 13}+e^{40 i \pi / 13}+e^{64 i \pi / 13}+e^{96 i \pi / 13}
\end{aligned}
$$

which were obtained from ω by multiplying the cubic residues by two and four. These 12 exponents, along with 0 , are $2 \pi i / 13$ times a complete residue class ($\bmod 13$). (This can actually be proven with Galois theory, but this is not important for the solution itself).
We now try finding the coefficients by computing $\omega_{1}+\omega_{2}+\omega, \omega_{1} \omega+\omega_{2} \omega+\omega_{1} \omega_{2}, \omega \omega_{1} \omega_{2}$, which are obtained by Vieta's formulas. The first, as we mentioned before, is -1 .
For the other two, we analyze these terms by substituting the sums in and expanding out the products. For the second product, for instance, notice that we get $3 \cdot 4 \cdot 4=48$ terms. We now consider the number of these terms that are equal to $e^{2 \pi i r / 13}$ for each residue r. Notice that this is equal to the number of cubic residues s, t so that $s+2 t \equiv r(\bmod 13)$ plus the number of cubic residues s, t so that $s+4 t \equiv r(\bmod 13)$ plus the number where $2 s+4 t \equiv r$ $(\bmod 13)$. Each of these are obtained just from considering what it means for a term $e^{2 \pi i r / 13}$ to be obtained from one of the products.
However, we claim that we can biject these solutions together. To see this, we can combine these equations into the form $s 2^{j}+t 2^{j+1}=r$, where s, t are cubic residues and $j \in\{0,1,2\}$. It's not hard to see then that (s, t, j) is a solution for $r=1$ if and only if $\left(r^{\prime} s, r^{\prime} t, j\right)$ is a solution if r^{\prime} is a nonzero cubic residue, and that this is a bijection between solutions. If r^{\prime} is twice a cubic residue, notice that (s, t, j) is a solution for $r=1$ if and only if $\left(r^{\prime} s / 2, r^{\prime} t / 2, j+1\right)$ is a solution if $j=0,1$, and $\left(4 r^{\prime} s, 4 r^{\prime} t, 0\right)$ if $j=2$. A similar procedure works for four times a cubic residue. This means that the number of times that $e^{2 \pi i r / 13}$ appears for each nonzero residue r is the same. And as there are four solutions for $r=1$, namely $1=(-1)+2 *(1), 2 *(5)+$ $4 *(1), 4 *(8)+8 * 1,4 *(-1)+8 *(-1)$, it follows there are 4 copies of each residue, which means that this pairwise product equals -4 .
Finally, we consider $\omega \omega_{1} \omega_{2}$. Notice that again, the number of terms with residue r is the number of solutions to $r=s+2 t+4 u$, where s, t, u are cubic residues. Here, we see again that all nonzero r have the same number of solutions. We just need to find the number of solutions to $s+2 t+4 u \equiv 0(\bmod 13)$. Notice that by scaling up s we may assume that $s=1$; from here notice that by going through the values for t the only solution we have are $(1,8,12)$. This means there are 4 solutions for $r=0$ and $\frac{64-4}{12}=5$ for all nonzero residues.
Therefore, we see that the value of this product is equal to $4-5$, as the sum of this exponential for nonzero residues is equal to -1 . Our polynomial is thus $x^{3}+x^{2}-4 x+1$, and so our answer is $1+16+1=18$.
6. A sequence of integers x_{1}, x_{2}, \ldots is double-dipped if $x_{n+2}=a x_{n+1}+b x_{n}$ for all $n \geq 1$ and some fixed integers a, b. Ri begins to form a sequence by randomly picking three integers from the set $\{1,2, \ldots, 12\}$, with replacement. It is known that if Ri adds a term by picking another element at random from $\{1,2, \ldots, 12\}$, there is at least a $\frac{1}{3}$ chance that his resulting four-term sequence forms the beginning of a double-dipped sequence. Given this, how many distinct three-term sequences could Ri have picked to begin with?
Proposed by Austen Mazenko
Answer: 84
The main idea is that for a sequence a_{1}, a_{2}, a_{3}, a fourth term a_{4} is double-dipped only when a_{4} is a particular residue modulo $\left|a_{2}^{2}-a_{1} a_{3}\right|$. Thus, for there to be at least 4 such values of a_{4}, this absolute value must equal 1,2 , or 3 ; this gives casework.
If $x_{2}^{2} \pm 1=x_{1} x_{3}$: (double at end to reverse them) $(1,1,2),(1,2,3),(1,2,5),(1,3,8),(2,3,4)$, $(1,3,10),(2,3,5),(3,4,5),(2,5,12),(3,5,8),(4,5,6),(5,6,7),(6,7,8),(4,7,12),(5,7,10)$, $(7,8,9),(8,9,10),(9,10,11),(10,11,12)$.
If $x_{2}^{2} \pm 2=x_{1} x_{3}:$ (double at end to reverse them) $(1,1,3),(1,2,2),(1,2,6),(2,2,3),(1,3,7)$, $(1,3,11),(2,4,7),(2,4,9),(3,4,6),(3,5,9),(6,8,11)$.
If $x_{2}^{2} \pm 3=x_{1} x_{3}$: (double at end to reverse them) $(1,1,4),(2,1,2),(1,2,1),(1,2,7),(1,3,6)$, $(2,3,3),(1,3,12),(2,3,6),(3,3,4),(2,5,11),(4,5,7),(3,6,11),(7,9,12)$.
In sum, we get 84 (note that $(2,1,2)$ and $(1,2,1)$ in the last case are irreversible).
7. Pick x, y, z to be real numbers satisfying $(-x+y+z)^{2}-\frac{1}{3}=4(y-z)^{2},(x-y+z)^{2}-\frac{1}{4}=4(z-x)^{2}$, and $(x+y-z)^{2}-\frac{1}{5}=4(x-y)^{2}$. If the value of $x y+y z+z x$ can be written as $\frac{p}{q}$ for relatively prime positive integers p, q, find $p+q$.

Proposed by Sunay Joshi

Answer: 1727
For convenience, let $A=\frac{1}{3}, B=\frac{1}{4}$, and $C=\frac{1}{5}$. Isolating the constant on the right-hand side of the first equation, we find $(-x+y+z)^{2}-4(y-z)^{2}=A$. By difference of squares, this becomes $(-x+3 y-z)(-x-y+3 z)=A$. Consider the substitution $M=3 x-y-z, N=-x+3 y-z$, $P=-x-y+3 z$. Then our system reduces to $N P=A, M P=B, M N=C$. Multiplying the three together and taking the square root, we find $M N P=s \sqrt{A B C}$, where $s \in\{ \pm 1\}$. Hence $M=s \sqrt{A B C} \frac{1}{A}, N=s \sqrt{A B C} \frac{1}{B}, P=s \sqrt{A B C} \frac{1}{C}$. By our definition of M, N, P, we also have $M+N+P=x+y+z$, hence $x=\frac{2 M+N+P}{4}=\frac{s \sqrt{A B C}}{4}\left(\frac{2}{A}+\frac{1}{B}+\frac{1}{C}\right)=15 \frac{s \sqrt{A B C}}{4}$ and similarly $y=16 \frac{s \sqrt{A B C}}{4}$ and $z=17 \frac{s \sqrt{A B C}}{4}$. Since $s^{2}=1$, it follows that the desired quantity equals

$$
x y+y z+z x=\frac{s^{2} A B C}{16}(15 \cdot 16+16 \cdot 17+17 \cdot 15)=\frac{3 \cdot 16^{2}-1}{16 \cdot 60}=\frac{767}{960}
$$

Hence our answer is $767+960=1727$.
8. Ryan Alweiss storms into the Fine Hall common room with a gigantic eraser and erases all integers n in the interval $[2,728]$ such that 3^{t} doesn't divide $n!$, where $t=\left\lceil\frac{n-3}{2}\right\rceil$. Find the sum of the leftover integers in that interval modulo 1000.

Proposed by Sunay Joshi

Answer: 11
We claim that the sum of the integers n in the interval $\left[2,3^{k}-1\right]$ satisfying $3^{t} \mid n$! is $\frac{1}{2}\left(k^{2}+\right.$ $5 k) \cdot \frac{3^{k}-1}{2}-1$. To see this, first consider the condition $3^{t} \mid n$!. The highest power of a prime p dividing n ! is precisely $\nu_{p}(n)=\frac{n-s_{p}(n)}{p-1}$, where $s_{p}(n)$ denotes the sum of the digits of n in
base p. Therefore $t \leq \nu_{3}(n)$ is equivalent to $\left\lceil\frac{n-3}{2}\right\rceil \leq \frac{n-s_{3}(n)}{2}$. We split into two cases based on the parity of n. For n odd, this is $\frac{n-3}{2} \leq \frac{n-s_{3}(n)}{2}$, i.e. $s_{3}(n) \leq 3$. For n even, this is $\frac{n-2}{2} \leq \frac{n-s_{3}(n)}{2}$, i.e. $s_{3}(n) \leq 2$. In the former case, it follows that the ternary representation of n must consist of either (a) one 1 , (b) one 2 and one 1 , or (c) three 1 s . In the latter case, the ternary representation of n must consist of (d) one 2 or (e) two 1 s. We now count the contribution of a given digit in the five subcases (a) through (e), where we include $n=1$ among the valid numbers for convenience. (We will subtract $n=1$ at the end.) One can see that the contribution is 1 for $(\mathrm{a}), 2(k-1)+(k-1)=3(k-1)$ for $(\mathrm{b}),\binom{k-1}{2}$ for $(\mathrm{c}), 2$ for (d), and $(k-1)$ for (e). Thus each digit $3^{j}(0 \leq j \leq k-1)$ contributes $1+3(k-1)+\binom{k-1}{2}+2+(k-1)=\frac{1}{2}\left(k^{2}+5 k\right)$ times its value, yielding an answer of $\frac{1}{2}\left(k^{2}+5 k\right) \cdot \frac{3^{k}-1}{2}-1$, where we subtract one because we must ignore $n=1$. Plugging in $k=6$, we find a total of $12011 \equiv 11(\bmod 1000)$, our answer.
9. In the complex plane, let z_{1}, z_{2}, z_{3} be the roots of the polynomial $p(x)=x^{3}-a x^{2}+b x-a b$. Find the number of integers n between 1 and 500 inclusive that are expressible as $z_{1}^{4}+z_{2}^{4}+z_{3}^{4}$ for some choice of positive integers a, b.
Proposed by Sunay Joshi
Answer: 51
For all $j \in\{1,2,3\}$, we have $z_{j}^{3}=a z_{j}^{2}-b z_{j}+a b$. Multiplying by z_{j}, we find $z_{j}^{4}=\left(a^{2}-b\right) z_{j}^{2}+a^{2} b$. Summing over j and using the fact that $\sum z_{j}^{2}=a^{2}-2 b$, we find $\sum z_{j}^{4}=a^{4}+2 b^{2}$. In other words, it suffices to find the number of $n \in[1,500]$ of the form $a^{4}+2 b^{2}$ for $a, b \geq 1$. We first count the total number of pairs (a, b) satisfying the condition.
$a=1$: this implies $2 b^{2} \leq 500-1^{4}$, hence $b \leq 15$. This yields 15 solutions.
$a=2$: this implies $2 b^{2} \leq 500-2^{4}$, hence $b \leq 15$. This yields 15 solutions.
$a=3$: this implies $2 b^{2} \leq 500-3^{4}$, hence $b \leq 14$. This yields 14 solutions.
$a=4$: this implies $2 b^{2} \leq 500-4^{4}$, hence $b \leq 11$. This yields 11 solutions.
Next, we eliminate duplicates. Note that if $a^{4}+2 b^{2}=c^{4}+2 d^{2}$, then $a \equiv b(\bmod 2)$. Hence it suffices to check the cases $(a, c)=(1,3)$ and $(a, c)=(2,4)$.
If $(a, c)=(1,3)$, then $1^{4}+2 b^{2}=3^{4}+2 d^{2}$, implying $b^{2}-d^{2}=40$. Thus the pair $(b-d, b+d)$ can either be $(2,20)$ or $(4,10)$. These yield $b=11$ and $b=7$ respectively, which correspond to the duplicate solutions $n=243$ and $n=99$.
If $(a, c)=(2,4)$, then $2^{4}+2 b^{2}=4^{4}+2 d^{2}$, implying $b^{2}-d^{2}=24$. Thus the pair $(b-d, b+d)$ can either be $(2,12)$ or $(4,6)$. These yield $b=7$ and $b=5$ respectively, which correspond to the duplicate solutions $n=114$ and $n=66$.
Subtracting the 4 duplicates from our original count of $55=15+15+14+11$, we find our answer of 51 .
10. Let $\alpha, \beta, \gamma \in \mathbb{C}$ be the roots of the polynomial $x^{3}-3 x^{2}+3 x+7$. For any complex number z, let $f(z)$ be defined as follows:

$$
f(z)=|z-\alpha|+|z-\beta|+|z-\gamma|-2 \max _{w \in\{\alpha, \beta, \gamma\}}|z-w| .
$$

Let A be the area of the region bounded by the locus of all $z \in \mathbb{C}$ at which $f(z)$ attains its global minimum. Find $\lfloor A\rfloor$.

Proposed by Oliver Thakar

Answer: 12
The roots α, β, and γ are $-1,2 \pm \sqrt{3} i$, which form an equilateral triangle in the complex plane. $f(z)$ is simply the sum of the smaller two of the three distances between z and the vertices of
this triangle minus the largest of the distances. Ptolemy's inequality tells us that $f(z) \geq 0$ and it equals zero only when z lies on the circumcircle of the triangle with vertices α, β, γ; clearly, the circumcenter of this triangle is at $z=1$, so the circumradius is 2 . The area of the circle is $\pi \cdot 2^{2}$, which has floor 12 .
11. For the function

$$
g(a)=\max _{x \in \mathbb{R}}\left\{\cos x+\cos \left(x+\frac{\pi}{6}\right)+\cos \left(x+\frac{\pi}{4}\right)+\cos (x+a)\right\},
$$

let $b \in \mathbb{R}$ be the input that maximizes g. If $\cos ^{2} b=\frac{m+\sqrt{n}+\sqrt{p}-\sqrt{q}}{24}$ for positive integers m, n, p, q, find $m+n+p+q$.
Proposed by Ben Zenker
Answer: 54
By the addition formula for cosine, we may rewrite $f(x)$ as

$$
f(x)=\left(1+\cos \frac{\pi}{6}+\cos \frac{\pi}{4}+\cos a\right) \cos x-\left(\sin \frac{\pi}{6}+\sin \frac{\pi}{4}+\sin a\right) \sin x=A \sin x-B \sin x
$$

Factoring out $\sqrt{A^{2}+B^{2}}$, we find $f(x)=\sqrt{A^{2}+B^{2}} \cos (x-\theta)$, where $\cos \theta=\frac{A}{\sqrt{A^{2}+B^{2}}}$. It follows that $g(a)=\sqrt{A^{2}+B^{2}}$ and it suffices to maximize $A^{2}+B^{2}$. Expanding this expression, we find

$$
\begin{gathered}
g(a)=\left(1+\cos \frac{\pi}{6}+\cos \frac{\pi}{4}+\cos a\right)^{2}+\left(\sin \frac{\pi}{6}+\sin \frac{\pi}{4}+\sin a\right)^{2} \\
=(\alpha+\cos a)^{2}+(\beta+\sin a)^{2}=\left(\alpha^{2}+\beta^{2}+1\right)+(2 \alpha \cos a+2 \beta \sin a) \\
=\left(\alpha^{2}+\beta^{2}+1\right)+2 \sqrt{\alpha^{2}+\beta^{2}} \cos (\alpha-\varphi)
\end{gathered}
$$

where $\alpha=\frac{2+\sqrt{3}+\sqrt{2}}{2}, \beta=\frac{1+\sqrt{2}}{2}$, and $\cos \varphi=\frac{\alpha}{\sqrt{\alpha^{2}+\beta^{2}}}$. It follows that a maximizes g iff $a=\varphi+2 \pi k, k \in \mathbb{Z}$, where φ is any angle satisfying $\cos \varphi=\frac{\alpha}{\sqrt{\alpha^{2}+\beta^{2}}}$. Hence the desired quantity $\cos ^{2} a$ equals $\cos ^{2} \varphi$, which equals

$$
\cos ^{2} \varphi=\frac{\frac{1}{4}(2+\sqrt{2}+\sqrt{3})^{2}}{\frac{1}{2}(\sqrt{6}+2 \sqrt{3}+3 \sqrt{2}+6)}=\frac{(2+\sqrt{2}+\sqrt{3})^{2}}{2(2+\sqrt{2})(3+\sqrt{3})}=\frac{18+2 \sqrt{3}+\sqrt{6}-3 \sqrt{2}}{24}
$$

Thus $m=18, n=12, p=6, q=18$ and our answer is $18+12+6+18=54$.
12. Observe the set $S=\left\{(x, y) \in \mathbb{Z}^{2}:|x| \leq 5\right.$ and $\left.-10 \leq y \leq 0\right\}$. Find the number of points P in S such that there exists a tangent line from P to the parabola $y=x^{2}+1$ that can be written in the form $y=m x+b$, where m and b are integers.

Proposed by Frank Lu

Answer: 15
First, suppose that the line $y=m x+b$ is tangent to the parabola. Then, it follows that $x^{2}+1=$ $m x+b$ has exactly one solution, which in particular requires us to have that $x^{2}-m x+1-b=0$ to have one solution. But from completing the square, this is only possible if $1-b=\frac{m^{2}}{4}$, or that $m=2 \sqrt{1-b}$. For m, b to be integers, notice that we must have b of the form $1-k^{2}$, so $m=2 k$; if m were odd, then $1-b$, ergo b, would not be an integer.
Thus, our lines are of the form $y=2 k x+\left(1-k^{2}\right)$ for some integer $k \in \mathbb{Z}$. We now seek to classify the points (x, y) that lie on a line of this form. Given such a point P in our set, we solve for k. Notice that solving for k here yields us with $k^{2}-1-2 k x+y=0$, or that
$k=x \pm \sqrt{x^{2}+1-y}$. We require this to be an integer, and we are picking x, y to also be integers. Therefore, we must have that $y=x^{2}+1-l^{2}$ for some integer l, whereby we have that $k=x \pm l$ is an integer, given x is an integer.
To count these points: notice that $x^{2}+1$ takes on the values $1,2,5,10,17,26$, and that the negative squares are $0,-1,-4,-9,-16,-25,-36$. We now wish to count how many pairs (x, l) will yield a y that lies between -10 and 0 . For $x^{2}+1=1$, these are $-1,-4,-9$, so there are 3 . Repeating this procedure, we find that for $2,5,10,17,26$ that there are $2,1,1,1,1$, respectively. So the number of pairs (x, y) is thus $3+2 \cdot(2+1+1+1+1)=3+12=15$.
13. Of all functions $h: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{\geq 0}$, choose one satisfying $h(a b)=a h(b)+b h(a)$ for all $a, b \in \mathbb{Z}_{>0}$ and $h(p)=p$ for all prime numbers p. Find the sum of all positive integers $n \leq 100$ such that $h(n)=4 n$.

Proposed by Sunay Joshi

Answer: 729
Setting $a=b=1$ into the functional equation, we find $h(1)=0 \neq 4 \cdot 1$. Thus, we may restrict our attention to $n>1$.
We now show that if $n=\prod_{i=1}^{k} p_{i}^{e_{i}}>1$, then $h(n)=\left(\sum_{i=1}^{k} e_{i}\right) n$.
To see this, we proceed by induction on $n>1$. The base case, $n=2$, is evident. Suppose the result holds for all numbers less than n; we show the result for n. If n is prime, then $h(n)=n$ by assumption, as desired. Otherwise, we may write the prime factorization $n=\prod_{i=1}^{k} p_{i}^{e_{i}}$, where $k>1$ and $e_{i}>1$ for all i. In this case, we may set $a=p_{1}, b=n / p_{1}$ into the functional equation to find

$$
h(n)=p_{1} h\left(\frac{n}{p_{1}}\right)+\frac{n}{p_{1}} h\left(p_{1}\right)
$$

As $1<\frac{n}{p_{1}}<n$ by assumption, we may apply the inductive hypothesis to find

$$
h(n)=p_{1} \cdot\left(\sum_{i=1}^{k} e_{i}-1\right) \frac{n}{p_{1}}+\frac{n}{p_{1}} \cdot p_{1}=\left(\sum_{i=1}^{k} e_{i}-1\right) n+n=\left(\sum_{i=1}^{k} e_{i}\right) n
$$

completing the induction.
To solve $h(n)=4 n$ for $n=\prod_{i=1}^{k} p_{i}^{e_{i}}$, it follows that we must find all $2 \leq n \leq 100$ for which $\sum_{i=1}^{k} e_{i}=4$. These correspond to n with the prime factorizations $\left\{p^{4}, p^{3} q, p^{2} q^{2}, p^{2} q r, p q r s\right\}$. Considering each of these cases in turn quickly yields the list

$$
\begin{gathered}
n \in\left\{2^{4}, 3^{4}, 2^{3} \cdot 3,2^{3} \cdot 5,2^{3} \cdot 7,2^{3} \cdot 11,3^{3} \cdot 2,2^{2} \cdot 3^{2}, 2^{2} \cdot 5^{2}, 2^{2} \cdot 3 \cdot 5,2^{2} \cdot 3 \cdot 7,3^{2} \cdot 2 \cdot 5\right\} \\
=\{16,81,24,40,56,88,54,36,100,60,84,90\}
\end{gathered}
$$

with sum 729.
Remark: in number theory, the function $\frac{h(n)}{n}=\sum_{i} e_{i}$ is denoted $\Omega(n)$, and it counts the number of prime factors of n with multiplicity. Numbers with $\Omega(n)=k$ are called k-almost primes.
14. Let $\triangle A B C$ be a triangle. Let Q be a point in the interior of $\triangle A B C$, and let X, Y, Z denote the feet of the altitudes from Q to sides $B C, C A, A B$, respectively. Suppose that $B C=15$, $\angle A B C=60^{\circ}, B Z=8, Z Q=6$, and $\angle Q C A=30^{\circ}$. Let line $Q X$ intersect the circumcircle of $\triangle X Y Z$ at the point $W \neq X$. If the ratio $\frac{W Y}{W Z}$ can be expressed as $\frac{p}{q}$ for relatively prime positive integers p, q, find $p+q$.

Proposed by Sunay Joshi

Answer: 11
Let $\theta=\angle W Y Z$ and let $\varphi=\angle W Z Y$. By the Extended Law of Sines, $W Y / W Z=\sin \varphi / \sin \theta$. Since $W Y X Z$ is cyclic, $\angle W X Z=\theta$, and since $Q X B Z$ is cyclic, $\angle W X Z=\angle Q B Z$. Hence $\theta=$ $\angle Q B Z$. Since $\triangle Q B Z$ is right with sidelengths $6,8,10$, we have $\sin \theta=3 / 5$. Similarly, since $\angle W Z Y=\angle W X Y=\angle Q C Y=30^{\circ}, \sin \varphi=1 / 2$. The desired ratio is therefore $(1 / 2) /(3 / 5)=$ $5 / 6$ and our answer is $5+6=11$.
15. Subsets S of the first 35 positive integers $\{1,2,3, \ldots, 35\}$ are called contrived if S has size 4 and the sum of the squares of the elements of S is divisible by 7. Find the number of contrived sets.
Proposed by Sunay Joshi
Answer: 8605
There are four distinct quadratic residues modulo 7 , namely $0,1,2,4$, with $0^{2} \equiv 0,1^{2}, 6^{2} \equiv 1$, $3^{2}, 4^{2} \equiv 2$, and $2^{2}, 5^{2} \equiv 4$. There are five 4-tuples $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ with $a_{1}<a_{2}<a_{3}<a_{4}$ and $a_{i} \in\{0,1,2,4\}$ satisfying $a_{1}+a_{2}+a_{3}+a_{4} \equiv 0$, namely $(0,0,0,0),(0,1,2,4),(1,1,1,4)$, $(1,2,2,2)$, and $(2,4,4,4)$. Among the first 35 positive integers, there are 5 numbers x with $x^{2} \equiv 0,10$ numbers with $x^{2} \equiv 1,10$ numbers with $x^{2} \equiv 2$, and 10 numbers with $x^{2} \equiv 4$. Thus each 4-tuple corresponds to $\binom{5}{4},\left(\begin{array}{c}5 \\ 1 \\ 3\end{array}\right)\binom{10}{1}^{3},\binom{10}{3}\binom{10}{1},\binom{10}{3}\binom{10}{1}$, and $\binom{10}{3}\binom{10}{1}$ subsets, respectively. Our answer is therefore $5+5 \cdot 10^{3}+120 \cdot 10+120 \cdot 10+120 \cdot 10=8605$.

