
Team Round Solutions

1. Given n ≥ 1, let An denote the set of the first n positive integers. We say that a bijection
f : An → An has a hump at m ∈ An \{1, n} if f(m) > f(m+1) and f(m) > f(m−1). We say
that f has a hump at 1 if f(1) > f(2), and f has a hump at n if f(n) > f(n− 1). Let Pn be
the probability that a bijection f : An → An, when selected uniformly at random, has exactly
one hump. For how many positive integers n ≤ 2020 is Pn expressible as a unit fraction?

Proposed by Oliver Thakar

Answer: 11

Fix n. Let N(n, k) be the number of bijections f : An → An, that has one hump at k, and no
others. (Then, notice that f(k) = n.) I claim that N(n, k) =

(
n−1
k−1

)
.

I prove this claim by induction on n. For the base case, when n = 1, we have N(1, 1) = 1 =
(
0
0

)
.

Otherwise, assume thatN(n−1, k) =
(
n−2
k−1

)
for all k. Then, notice that a bjiection f : An → An

has one hump at k, and no others if and only if f : (An ∼ {k}) → An−1 has one hump at
either k − 1 or k + 1. This means:

N(n, k) = N(n− 1, k − 1) +N(n− 1, k) =

(
n− 2

k − 2

)
+

(
n− 2

k − 1

)
=

(
n− 1

k − 1

)
,

by our induction hypothesis and a well-known property of binomial coefficients.

Thus, the total number of bijections f : An → An with exactly one hump is
∑n

k=1 N(n, k) =∑n
k=1

(
n−1
k−1

)
= 2n−1. Since the total number of bijections f : An → An is n!, then Pn = 2n−1

n! .

Letting r be the unique integer such that n = 2r + q where 0 ≤ q < 2r, then the exponent of
2 in n! is equal to:

∞∑
j=1

⌊ n
2j

⌋ ≤
r∑

j=1

n

2j
= n− n

2r
≤ n− 1,

with equality in both places if and only if n = 2r. Therefore, Pn is expressible as a unit
fraction if and only if n is a power of 2, so the n ≤ 2020 that satisfy this condition are
precisely: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, of which there are 11.

2. Let Γ1 and Γ2 be externally tangent circles with radii 1
2 and 1

8 , respectively. The line ℓ is a
common external tangent to Γ1 and Γ2. For n ≥ 3, we define Γn as the smallest circle tangent
to Γn−1,Γn−2, and ℓ. The radius of Γ10 can be expressed as a

b where a, b are relatively prime
positive integers. Find a+ b.

Proposed by Adam Huang

Answer: 15843

Note that the radii rn−2, rn−1, rn satisfy the recurrence 1√
rn−2

+ 1√
rn−1

= 1√
rn
. Let an := 1√

rn
.

Then an obeys the Fibonacci recurrence with initial conditions a1 =
√
2 and a2 = 2

√
2. It

follows that a10 = 89
√
2, so that 1√

r10
= 89

√
2, r10 = 1

892·2 and our answer is a+b = 1+892 ·2 =

15843.

3. A quadratic polynomial f(x) is called sparse if its degree is exactly 2, if it has integer coeffi-
cients, and if there exists a nonzero polynomial g(x) with integer coefficients such that f(x)g(x)
has degree at most 3 and f(x)g(x) has at most two nonzero coefficients. Find the number of
sparse quadratics whose coefficients lie between 0 and 10, inclusive.

Proposed by Sunay Joshi
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Answer: 228

Let N = 10.

If f(x)g(x) has exactly one nonzero coefficient, then f(x)g(x) = cxd. Thus f(x) = ax2 for
1 ≤ a ≤ N , yielding N = 10 quadratics.

If f(x)g(x) has exactly two nonzero coefficients, we proceed by casework on the degree of
f(x)g(x). Each case considers the smallest possible degree of f(x)g(x) to ensure that the cases
are distinct.

If the degree of f(x)g(x) is 2, then f(x) = ax2 + bx or f(x) = ax2 + c for a, b, c ̸= 0. This
yields 2N2 = 200 quadratics.

If the degree of f(x)g(x) is 3, we claim that f(x) = km2x2 + kmnx + kn2 for k,m, n ∈ Z,
gcd(m,n) = 1. To see this, suppose f(x)g(x) = ax3 + b = (cx2 + dx + e)(ℓx + p). Dividing
through by a = cℓ, it suffices to consider x3 + b = (x2 + dx + e)(x + p) over the rationals.
Expanding, we find p + d = 0, dp + e = 0, and b = ep. This implies p = −d, e = d2, and
b = −d3. Thus ax3 + b must be of the form km3x3 + kn3 with gcd(m,n) = 1, and the claim
follows.

In this case, note that km2 ≤ N and kn2 ≤ N implies kmn ≤ N . We proceed by casework on
k.

If k = 1, then m2, n2 ≤ 10, hence m,n ∈ {1, 2, 3}. All pairs excluding m = n ∈ {2, 3} are
coprime, so we find 32 − 2 = 7 solutions. If k = 2, then m2, n2 ≤ 5, hence m,n ∈ {1, 2}. All
pairs excluding m = n = 2 are coprime, so we find 22 − 1 = 3 solutions. If 3 ≤ k ≤ 10, then
m2, n2 ≤ 1, hence m = n = 1. This yields 1 solution for each value of k, hence 8 in total. Thus
this case yields 7 + 3 + 8 = 18 solutions.

Adding up, we find a total of 10 + 200 + 18 = 228 solutions.

4. Find the largest integer x < 1000 such that
(
1515
x

)
and

(
1975
x

)
are both odd.

Proposed by Michael Gintz

Answer: 419
Solution 1: Kummer’s Theorem (special case):

(
n
m

)
is odd iff you never carry while performing

the addition of m and n−m in base 2 (proof will not be provided, look online).

So, we need there to be no carries when we perform x+(1515−x) and x+(1975−x) in binary.
1515 = 1024 + 512− 21 = 101111010112 and 1975 = 2047− 64− 8 = 111101101112.
For there to be no carries, we need x and 1515 − x to both have 0’s in the spots where 1515
has a 0. To maximize x, we should include as many 1’s as possible. So, we should take x be
as large as possible such that it has a 1 at each position where both 1515 and 1975 have 1’s.
Then, x = 001101000112 = 419 .

Solution 2:

Lucas’s Theorem:
(
n
m

)
≡

k∏
i=0

(
ni

mi

)
(mod p), with ni is n’s ith digit, base p.

(
ni

mi

)
= 0 if mi > ni.

Similar reasoning to before, if we want
(
n
m

)
≡ 0 (mod 2), we need

(
ni

mi

)
≡ 1 for all i, meaning

mi = 0 if ni = 0. So, x can only have a 1 where both 1515 and 1975 have 1’s, and the rest of
the solution follows as before.

5. Let S denote the set of all positive integers whose prime factors are elements of {2, 3, 5, 7, 11}.
(We include 1 in the set S.) If ∑

q∈S

φ(q)

q2

2



can be written as a/b for relatively prime positive integers a and b, find a+ b. (Here φ denotes
Euler’s totient function.)

Proposed by Sunay Joshi

Answer: 1537

Since φ is multiplicative, the desired sum equals

∏
p∈{2,3,5,7,11}

∑
k≥0

φ(pk)

(pk)2

We now consider the inner sum. Note that φ(pk) = pk−1(p − 1) for k ≥ 1, while φ(p0) = 1.
Hence the sum reduces to

1 +
∑
k≥1

p− 1

pk+1
= 1 +

p− 1

p2
· 1

1− 1/p
=

p+ 1

p

Therefore the desired sum equals

3

2
· 4
3
· 6
5
· 8
7
· 12
11

=
1152

385
,

and our answer is 1537.

6. Let f(p) denote the number of ordered tuples (x1, x2, . . . , xp) of nonnegative integers satisfying
p∑

i=1

xi = 2022, where xi ≡ i (mod p) for all 1 ≤ i ≤ p. Find the remainder when
∑

p∈S f(p) is

divided by 1000, where S denotes the set of all primes less than 2022.

Proposed by Sunay Joshi

Answer: 475

Considering the equation modulo p, we see that p(p−1)
2 ≡ 2022 (mod p), hence p = 2 or

p|2022 = 2 · 3 · 337. It is easy to see that p = 2 yields zero solutions. Further, p = 337 yields
zero solutions because the left hand side is at least p(p−1)/2. Hence the sum simplifies to f(p)
for p = 3. Subtracting i from xi for 1 ≤ i ≤ p − 1 and dividing by p, we find the equivalent
equation

∑3
i=1 yi = 673 for yi ≥ 0. By stars and bars, this has

(
675
2

)
solutions, which leaves a

remainder of 475 when divided by 1000.

7. Alice, Bob, and Carol each independently roll a fair six-sided die and obtain the numbers a, b, c,
respectively. They then compute the polynomial f(x) = x3 + px2 + qx + r with roots a, b, c.
If the expected value of the sum of the squares of the coefficients of f(x) is m

n for relatively
prime positive integers m,n, find the remainder when m+ n is divided by 1000.

Proposed by Sunay Joshi

Answer: 551

The sum of the squares of the coefficients is 1+p2+q2+r2. By Vieta’s formulas, p = −(a+b+c),
q = ab+bc+ca, and r = −abc. By independence, the expected value of the sum of the squares
is therefore

1 + (3ν + 6µ2) + (3ν2 + 6νµ2) + ν3,

where µ = E(a) and ν = E(a2). It is easy to check that µ = 7/2 and ν = 91/6. Plugging these
values into the above yields the fraction 1169335/216, so that our answer is 551.
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8. Let △ABC be a triangle with sidelengths AB = 5, BC = 7, and CA = 6. Let D,E, F be
the feet of the altitudes from A,B,C, respectively. Let L,M,N be the midpoints of sides
BC,CA,AB, respectively. If the area of the convex hexagon with vertices at D,E, F, L,M,N

can be written as
x
√
y

z for positive integers x, y, z with gcd(x, z) = 1 and y square-free, find
x+ y + z.

Proposed by Sunay Joshi

Answer: 10043

Let [P] denote the area of polygon P. Let a, b, c denote BC,CA,AB, respectively.

First note that the correct ordering of the vertices of the convex hexagon in counterclockwise
order is DNFEML. Therefore we have the identity

[DNFEML] = [ABC]− [BND]− [CLM ]− [AEF ]

Since CLM is similar to ABC with CL/CB = 1/2, we have [CLM ] = 1
4 [ABC]. Also, since

AEF is similar to ABC with AE/AB = cosA, we have [AEF ] = cos2 A · [ABC]. Finally,

[BND] =
1

2
[ABD] =

1

2

BD

BC
[ABC] =

c cosB

2a
· [ABC]

By Heron’s Formula, [ABC] =
√
9 · 4 · 3 · 2 = 6

√
6. By the Law of Cosines, cosA = b2+c2−a2

2bc =
1
5 and cosB = a2+c2−b2

2ac = 19
35 . Plugging these values in, we find

[DNFEML] = 6
√
6 ·

[
1− 19

98
− 1

4
− 1

25

]
=

7587
√
6

2450

Our answer is therefore 7587 + 6 + 2450 = 10043.

9. The real quartic Px4 + Ux3 +Mx2 + Ax+ C has four different positive real roots. Find the
square of the smallest real number z for which the expression M2 − 2UA + zPC is always
positive, regardless of what the roots of the quartic are.

Proposed by Daniel Carter

Answer: 16

Denote by Σa,b,c,d the sum of the products of one root raised to the a, a different root raised
to the b, a third root raised to the c, and the last root raised to the d. For example, if the
four roots are p, q, r, s, then Σ2,0,0,0 = p2 + q2 + r2 + s2 and Σ1,1,1,1 = pqrs. We have that
U = −PΣ1,0,0,0, M = PΣ1,1,0,0, A = −PΣ1,1,1,0, and C = PΣ1,1,1,1. Then one can see
M2 = P 2(Σ2,2,0,0 + 2Σ2,1,1,0 + 6Σ1,1,1,1) and UA = P 2(Σ2,1,1,0 + 4Σ1,1,1,1), so the expression
M2 − 2UA+ zPC is equal to P 2(Σ2,2,0,0 + (z − 2)Σ1,1,1,1).

Taking p, q, r, s arbitrarily close to each other makes Σ2,2,0,0 close to 6p4 and Σ1,1,1,1 close to
p4, so this expression is arbitrarily close to P 2(z + 4)p4. Thus if z < −4 this can be negative.
Also, by AM-GM and the fact that the roots are all different we have Σ2,2,0,0/6 > Σ1,1,1,1, so
if z ≥ −4, the expression is positive. Thus z = −4 and our answer is (−4)2 = 16.

10. The sum

2020∑
k=1

k cos

(
4kπ

4041

)
can be written in the form

a cos(pπq )− b

c sin2(pπq )
,
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where a, b, c are relatively prime positive integers and p, q are relatively prime positive integers
where p < q. Determine a+ b+ c+ p+ q.

Proposed by Frank Lu

Answer: 4049

We convert this into complex numbers, writing this as the real part of the sum
2020∑
j=1

je
4ijπ
4041 .

Using the formula for the sum of a geometric series, we instead write this as
2020∑
j=1

2020∑
k=j

e
4ikπ
4041 =

2020∑
j=1

e
8084iπ
4041 −e

4jiπ
4041

e
4iπ
4041 −1

= 2020e
8084iπ
4041

e
4iπ
4041 −1

− e
8084iπ
4041 −e

4iπ
4041

(e
4iπ
4041 −1)2

. Now, we can rewrite this as 1010e8082iπ/4041

i((e
2iπ
4041 −e

−2iπ
4041 )/2i)

+

e
8080iπ
4041 −1

((e
2iπ
4041 −e

−2iπ
4041 )/2i)2

. Taking the real part of this yields the expression
1010 sin( 8082π

4041 )

sin( 2π
4041 )

+
cos( 8080π

4041 )−1

4 sin2( 2π
4041 )

.

But we know that sin(2π) = 0, which means that we can rewrite this as
cos( 2π

4041 )−1

4 sin2( 2π
4041 )

. We thus

get the answer 1 + 1 + 4 + 2 + 4041 = 4049.

11. Let f(z) = az+b
cz+d for a, b, c, d ∈ C. Suppose that f(1) = i, f(2) = i2, and f(3) = i3. If the real

part of f(4) can be written as m
n for relatively prime positive integers m,n, find m2 + n2.

Proposed by Sunay Joshi and Aleksa Milojevic

Answer: 34

Note that Möbius transformations (such as f) preserve the cross ratio

(z, z1; z2, z3) =
z − z2
z − z3

· z1 − z3
z1 − z2

In particular, if w = f(z), we must have (z, 1; 2, 3) = (w, i; i2, i3). In other words,

z − 2

z − 3
· 1− 3

1− 2
=

w − i2

w − i3
· i− i3

i− i2

Plugging in z = 4 and solving for w, we find

w =
3

5
− 4

5
i,

and so our answer is 32 + 52 = 34.

12. What is the sum of all possible
(
i
j

)
subject to the restrictions that i ≥ 10, j ≥ 0, and i+j ≤ 20?

Count different i, j that yield the same value separately - for example, count both
(
10
1

)
and(

10
9

)
.

Proposed by Nathan Bergman

Answer: 27633

We refer to Pascal’s triangle. Here, we’ll solve the general case and plug in 10, 20 at the end.
It’s tempting to look at this as rows with decreasing numbers of elements, but it is better to
look at columns. To do so, change the problem to find the sum of all possible values of

(
i
j

)
subject to the restrictions that i, j ≥ 0 and i+ j ≤ n. This new problem has a sum of 2n − 1
(sum of Pascal’s triangle rows below row n) larger than the previous problem, so we must
subtract that at the end. Arranging this carefully, by looking at a sum of columns, we get:

n∑
i=0

2n−i∑
j=i

(
j

i

)
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Using the hockey stick identity, we can turn this into

n∑
i=0

(
2n+ 1− i

i+ 1

)

Letting k = i+ 1, we can rewrite this as

n+1∑
k=1

(
2n+ 2− k

k

)

By the Fibonacci identity for Pascal’s triangle, we know

n+1∑
k=0

(
2n+ 2− k

k

)
= F2n+3

Here, F0 = 0, F1 = 1, Fm = Fm−1 + Fm−2 for m ≥ 2. Applying the Fibonacci Identity to
Pascal’s Triangle gives our sum is F2n+3−1. Subtracting our initial 2n−1 gives a final answer
of F2n+3 − 2n.

Lastly, the problem asks for n = 10, so the answer is F23 − 210 = 28657− 1024 = 27633.

13. Let △TBD be a triangle with TB = 6, BD = 8, and DT = 7. Let I be the incenter of
△TBD, and let TI intersect the circumcircle of △TBD at M ̸= T . Let lines TB and MD
intersect at Y , and let lines TD and MB intersect at X. Let the circumcircles of △Y BM and
△XDM intersect at Z ̸= M . If the area of △Y BZ is x and the area of △XDZ is y, then the
ratio x

y can be expressed as p
q , where p and q are relatively prime positive integers. Find p+ q.

Proposed by Sunay Joshi

Answer: 97

Below, let us relabel points T,D as points A,C, respectively. Let a = BC, b = CA, and
c = AB.

Since ∠Y ZB = ∠YMB = ∠XMC = ∠MZC and ∠BY Z = ∠XMZ = ∠XCZ, the triangles
△ZY B and △ZCX are similar. The desired ratio is therefore (Y B/XC)2.

Since triangles △Y BM and △Y CA are similar, we have Y B/Y C = MB/AC and YM/Y A =
MB/AC. Using the fact that Y C = YM + MC and Y A = Y B + AB, we find that Y B =
MB2(b+c)
b2−MB2 . By symmetry, XC = MC2(b+c)

c2−MC2 . Since M is the midpoint of arc BC, we have

MB = MC, and hence the desired ratio reduces to ( b
2−MB2

c2−MB2 )
2.

To compute MB, note that MB = a
2 cos(A/2) . By the Law of Cosines,

MB2 =
a2

4 cos2(A/2)
=

a2

2(1 + cosA)
=

a2bc

(b+ c)2 − a2

Therefore the desired ratio equals(
b2(b+ c)− a2b

c2(b+ c)− a2c

)2

=
81

16
,

and our answer is 81 + 16 = 97.
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14. Kelvin the frog is hopping on the coordinate plane R2. He starts at the origin, and every
second, he hops one unit to the right, left, up, or down, such that he always remains in the
first quadrant {(x, y) : x ≥ 0, y ≥ 0}. In how many ways can Kelvin make his first 14 jumps
such that his 14th jump lands at the origin?

Proposed by Ben Zenker

Answer: 613470

Let 2L = 14 be the length of the walk. Let 2k denote the number of jumps made to the
left/right, so that 2(L− k) jumps are made up/down. The number of paths is therefore

L∑
k=0

(
2L

2k

)
CkCL−k (1)

where Ck = 1
k+1

(
2k
k

)
denotes the k-th Catalan number. We claim that the above is precisely

CLCL+1, which for L = 7 equals C7 · C8 = 429 · 1430 = 613470, our answer.

We now prove the claim. For convenience replace L with the variable n. Note that(
2n

2k

)
CkCn−k =

(
2n

2k

)
· 1

k + 1

(
2k

k

)
· 1

n− k + 1

(
2(n− k)

n− k

)
(2)

=
(2n)!

(k + 1)!(n− k)! · (n− k + 1)!k!
(3)

=
1

(n+ 1)2

(
2n

n

)(
n+ 1

k

)(
n+ 1

k + 1

)
(4)

= Cn · 1

n+ 1

(
n+ 1

k

)(
n+ 1

n− k

)
(5)

Summing over k and applying Vandermonde’s identity, this becomes

Cn · 1

n+ 1

(
2n+ 2

n

)
= Cn · 1

n+ 2

(
2(n+ 1)

n+ 1

)
(6)

= Cn · Cn+1 (7)

as claimed. The result follows.

15. Let an denote the number of ternary strings of length n so that there does not exist a k < n
such that the first k digits of the string equals the last k digits. What is the largest integer m
such that 3m|a2023?
Austen Mazenko

Answer: 9

We claim that an satisfies the following recursive relations: a2n+1 = 3a2n and a2n = 3a2n−1 −
an. Such strings satisfying this criterion are known as bifix-free.

We begin with the observation that if some string s is not-bifix free, then it’s possible to find
a k ≤ n

2 such that the first k digits of s equals its last k digits. Suppose the length of the
minimal substring s′ of s that is both a prefix and suffix for it is length k > n

2 . Thus, the
prefix s′ and suffix s′ must overlap in 2k − n ≥ 1 values, so the last 2k − n digits of s′ equal
its first 2k − n digits. But, because s′ is a prefix and suffix of s, we see that this means the
first 2k−n digits of s equal its last 2k−n digits. We have thus found a substring s′′ of length
2k − n < k that is both a prefix and suffix of s, contradicting minimality of s′.

To see why a2n+1 = 3a2n, notice first that if s is a length 2n bifix-free string, then inserting any
digit right in the middle gives another bifix-free string s′, because from our earlier observation
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if s′ has any bifix, then it must have a bifix of length ≤ n which means it doesn’t include
the interpolated digit and thus would have been a bifix for s. Analogous reasoning show that
any bifix-free string t of length 2n + 1 can be mapped to a bifix-free string t′ of length 2n
by removing its middle digit. This establishes a one-to-three mapping between length 2n and
length 2n+ 1 bifix-free strings, so a2n+1 = 3a2n.

To see why a2n = 3a2n−1 − an, we will demonstrate a one-to-three mapping between length
2n− 1 bifix-free strings and the union of the set of 2n bifix-free strings with the set of length
2n strings which are the concatenation of two copies of the same length n bifix-free string.
First, for any bifix-free string s of length 2n− 1, we can insert any digit into its nth position
3 different ways. Now, the resulting length 2n string s′ can’t have any bifix of length ≤ n− 1
because then it would be a bifix of s. Thus, either s′ is a length 2n bifix or it has a bifix of
length n, aka, its first n digit substring equals its latter n digit substring. Moreover, we see
this substring s′′ must itself be bifix-free of length n because any bifix it has is a bifix of length
≤ n−1 of s′, but we showed this was impossible. It remains to see that any length 2n bifix-free
string and any concatenation of a length n bifix-free string with itself can be constructed this
way. Indeed, removing the nth digit from a length 2n bifix-free string must result in a bifix-free
string, because if the result isn’t bifix-free then it would have a bifix of length at most n − 1
which would thus be a bifix of the original string. The same argument applies to the other
case, whence the mapping is one-to-three, as claimed. Therefore, 3 · a2n−1 = an + a2n.

Note a1 = 3, a2 = 6. To finish the problem, we remark that ν3(an) is the number of ones in the
binary representation of n. This can be proven by strong induction. The base cases obviously
hold. Now, suppose it holds up to an. If n is even, then n + 1 has one more binary 1 than
n, and indeed an+1 = 3an =⇒ ν3(an+1) = 1 + ν3(an). If n is odd, then from the recursive
relation for an we have ν3(an+1) = ν3(3an − a(n+1)/2). If ν3(3an) ̸= ν3(a(n+1)/2), then we see
ν3(an+1) = min{1+ ν3(an), ν3(a(n+1)/2)}. Note that, to get from (n+1)/2 to n in binary, you
append a 0 to the right, then replace all the trailing zeros with ones and the rightmost one with
a zero. In particular, this process either keeps the numbers of ones the same or raises it. Thus,
by the inductive hypothesis, ν3(3an) ̸= ν3(a(n+1)/2) always holds, so ν3(an+1) = ν3(a(n+1)/2),
which by the inductive hypothesis is precisely the number of ones in the binary representation
of (n+1)/2 which equals the number of ones in the binary representation of n+1, as desired.

Thus, ν3(a2023) is the number of ones in the binary representation 2023 = 111111001112,
namely, 9.
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