PUM.C

Team Round

The Team Round consists of 15 questions. Your team has **50 minutes** to complete the Team Round. Each problem is worth 5 points.

Call a string of letters assessable if it is of the form '*ss' for some vowel *.

Let M be the total number of assessable strings in the problem text of all four individual rounds *in* your division combined. Submit a positive integer N; the number of bonus points your team will receive is $|8e^{-|M-N|/12}|$.

- 1. Given $n \ge 1$, let A_n denote the set of the first n positive integers. We say that a bijection $f: A_n \to A_n$ has a hump at $m \in A_n \setminus \{1, n\}$ if f(m) > f(m+1) and f(m) > f(m-1). We say that f has a hump at 1 if f(1) > f(2), and f has a hump at n if f(n) > f(n-1). Let P_n be the probability that a bijection $f: A_n \to A_n$, when selected uniformly at random, has exactly one hump. For how many positive integers $n \le 2020$ is P_n expressible as a unit fraction?
- 2. Let Γ_1 and Γ_2 be externally tangent circles with radii $\frac{1}{2}$ and $\frac{1}{8}$, respectively. The line ℓ is a common external tangent to Γ_1 and Γ_2 . For $n \geq 3$, we define Γ_n as the smallest circle tangent to $\Gamma_{n-1}, \Gamma_{n-2}$, and ℓ . The radius of Γ_{10} can be expressed as $\frac{a}{b}$ where a, b are relatively prime positive integers. Find a + b.
- 3. A quadratic polynomial f(x) is called *sparse* if its degree is exactly 2, if it has integer coefficients, and if there exists a nonzero polynomial g(x) with integer coefficients such that f(x)g(x) has degree at most 3 and f(x)g(x) has at most two nonzero coefficients. Find the number of sparse quadratics whose coefficients lie between 0 and 10, inclusive.
- 4. Find the largest integer x < 1000 such that $\binom{1515}{x}$ and $\binom{1975}{x}$ are both odd.
- 5. Let S denote the set of all positive integers whose prime factors are elements of $\{2, 3, 5, 7, 11\}$. (We include 1 in the set S.) If

$$\sum_{q \in S} \frac{\varphi(q)}{q^2}$$

can be written as $\frac{a}{b}$ for relatively prime positive integers a and b, find a + b. (Here φ denotes Euler's totient function.)

- 6. Let f(p) denote the number of ordered tuples (x_1, x_2, \ldots, x_p) of nonnegative integers satisfying $\sum_{i=1}^{p} x_i = 2022$, where $x_i \equiv i \pmod{p}$ for all $1 \leq i \leq p$. Find the remainder when $\sum_{p \in S} f(p)$ is divided by 1000, where S denotes the set of all primes less than 2022.
- 7. Alice, Bob, and Carol each independently roll a fair six-sided die and obtain the numbers a, b, c, respectively. They then compute the polynomial $f(x) = x^3 + px^2 + qx + r$ with roots a, b, c. If the expected value of the sum of the squares of the coefficients of f(x) is $\frac{m}{n}$ for relatively prime positive integers m, n, find the remainder when m + n is divided by 1000.
- 8. Let $\triangle ABC$ be a triangle with sidelengths AB = 5, BC = 7, and CA = 6. Let D, E, F be the feet of the altitudes from A, B, C, respectively. Let L, M, N be the midpoints of sides BC, CA, AB, respectively. If the area of the convex hexagon with vertices at D, E, F, L, M, N can be written as $\frac{x\sqrt{y}}{z}$ for positive integers x, y, z with gcd(x, z) = 1 and y square-free, find x + y + z.
- 9. The real quartic $Px^4 + Ux^3 + Mx^2 + Ax + C$ has four different positive real roots. Find the square of the smallest real number z for which the expression $M^2 2UA + zPC$ is always positive, regardless of what the roots of the quartic are.

PUM.C

10. The sum $\sum_{k=1}^{2020} k \cos\left(\frac{4k\pi}{4041}\right)$ can be written in the form

$$\frac{a\cos(\frac{p\pi}{q}) - b}{c\sin^2(\frac{p\pi}{q})},$$

where a, b, c are relatively prime positive integers and p, q are relatively prime positive integers where p < q. Determine a + b + c + p + q.

- 11. Let $f(z) = \frac{az+b}{cz+d}$ for $a, b, c, d \in \mathbb{C}$. Suppose that f(1) = i, $f(2) = i^2$, and $f(3) = i^3$. If the real part of f(4) can be written as $\frac{m}{n}$ for relatively prime positive integers m, n, find $m^2 + n^2$.
- 12. What is the sum of all possible $\binom{i}{j}$ subject to the restrictions that $i \ge 10, j \ge 0$, and $i+j \le 20$? Count different i, j that yield the same value separately - for example, count both $\binom{10}{1}$ and $\binom{10}{9}$.
- 13. Let $\triangle TBD$ be a triangle with TB = 6, BD = 8, and DT = 7. Let I be the incenter of $\triangle TBD$, and let TI intersect the circumcircle of $\triangle TBD$ at $M \neq T$. Let lines TB and MD intersect at Y, and let lines TD and MB intersect at X. Let the circumcircles of $\triangle YBM$ and $\triangle XDM$ intersect at $Z \neq M$. If the area of $\triangle YBZ$ is x and the area of $\triangle XDZ$ is y, then the ratio $\frac{x}{y}$ can be expressed as $\frac{p}{q}$, where p and q are relatively prime positive integers. Find p+q.
- 14. Kelvin the frog is hopping on the coordinate plane \mathbb{R}^2 . He starts at the origin, and every second, he hops one unit to the right, left, up, or down, such that he always remains in the first quadrant $\{(x, y) : x \ge 0, y \ge 0\}$. In how many ways can Kelvin make his first 14 jumps such that his 14th jump lands at the origin?
- 15. Let a_n denote the number of ternary strings of length n so that there does not exist a k < n such that the first k digits of the string equals the last k digits. What is the largest integer m such that $3^m |a_{2023}|^2$?

Team:

Write answers in table below:

Q1		Q2		Q3		Q4		Q5		Q6		Q7		Q8	
														1	
	Q9		Q10		Q11		Q12		Q13		Q14		Q15		