$P \cup M \therefore C$

Team Round

The Team Round consists of 15 questions. Your team has 50 minutes to complete the Team Round. Each problem is worth 5 points.
Call a string of letters assessable if it is of the form '*ss' for some vowel $*$.
Let M be the total number of assessable strings in the problem text of all four individual rounds in your division combined. Submit a positive integer N; the number of bonus points your team will receive is $\left\lfloor 8 e^{-|M-N| / 12}\right\rfloor$.

1. Given $n \geq 1$, let A_{n} denote the set of the first n positive integers. We say that a bijection $f: A_{n} \rightarrow A_{n}$ has a hump at $m \in A_{n} \backslash\{1, n\}$ if $f(m)>f(m+1)$ and $f(m)>f(m-1)$. We say that f has a hump at 1 if $f(1)>f(2)$, and f has a hump at n if $f(n)>f(n-1)$. Let P_{n} be the probability that a bijection $f: A_{n} \rightarrow A_{n}$, when selected uniformly at random, has exactly one hump. For how many positive integers $n \leq 2020$ is P_{n} expressible as a unit fraction?
2. Let Γ_{1} and Γ_{2} be externally tangent circles with radii $\frac{1}{2}$ and $\frac{1}{8}$, respectively. The line ℓ is a common external tangent to Γ_{1} and Γ_{2}. For $n \geq 3$, we define Γ_{n} as the smallest circle tangent to $\Gamma_{n-1}, \Gamma_{n-2}$, and ℓ. The radius of Γ_{10} can be expressed as $\frac{a}{b}$ where a, b are relatively prime positive integers. Find $a+b$.
3. A quadratic polynomial $f(x)$ is called sparse if its degree is exactly 2 , if it has integer coefficients, and if there exists a nonzero polynomial $g(x)$ with integer coefficients such that $f(x) g(x)$ has degree at most 3 and $f(x) g(x)$ has at most two nonzero coefficients. Find the number of sparse quadratics whose coefficients lie between 0 and 10, inclusive.
4. Find the largest integer $x<1000$ such that $\binom{1515}{x}$ and $\binom{1975}{x}$ are both odd.
5. Let S denote the set of all positive integers whose prime factors are elements of $\{2,3,5,7,11\}$. (We include 1 in the set S.) If

$$
\sum_{q \in S} \frac{\varphi(q)}{q^{2}}
$$

can be written as $\frac{a}{b}$ for relatively prime positive integers a and b, find $a+b$. (Here φ denotes Euler's totient function.)
6. Let $f(p)$ denote the number of ordered tuples $\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ of nonnegative integers satisfying $\sum_{i=1}^{p} x_{i}=2022$, where $x_{i} \equiv i(\bmod p)$ for all $1 \leq i \leq p$. Find the remainder when $\sum_{p \in \mathcal{S}} f(p)$ is divided by 1000, where \mathcal{S} denotes the set of all primes less than 2022 .
7. Alice, Bob, and Carol each independently roll a fair six-sided die and obtain the numbers a, b, c, respectively. They then compute the polynomial $f(x)=x^{3}+p x^{2}+q x+r$ with roots a, b, c. If the expected value of the sum of the squares of the coefficients of $f(x)$ is $\frac{m}{n}$ for relatively prime positive integers m, n, find the remainder when $m+n$ is divided by 1000 .
8. Let $\triangle A B C$ be a triangle with sidelengths $A B=5, B C=7$, and $C A=6$. Let D, E, F be the feet of the altitudes from A, B, C, respectively. Let L, M, N be the midpoints of sides $B C, C A, A B$, respectively. If the area of the convex hexagon with vertices at D, E, F, L, M, N can be written as $\frac{x \sqrt{y}}{z}$ for positive integers x, y, z with $\operatorname{gcd}(x, z)=1$ and y square-free, find $x+y+z$.
9. The real quartic $P x^{4}+U x^{3}+M x^{2}+A x+C$ has four different positive real roots. Find the square of the smallest real number z for which the expression $M^{2}-2 U A+z P C$ is always positive, regardless of what the roots of the quartic are.

P U M ㄷC

10. The sum $\sum_{k=1}^{2020} k \cos \left(\frac{4 k \pi}{4041}\right)$ can be written in the form

$$
\frac{a \cos \left(\frac{p \pi}{q}\right)-b}{c \sin ^{2}\left(\frac{p \pi}{q}\right)}
$$

where a, b, c are relatively prime positive integers and p, q are relatively prime positive integers where $p<q$. Determine $a+b+c+p+q$.
11. Let $f(z)=\frac{a z+b}{c z+d}$ for $a, b, c, d \in \mathbb{C}$. Suppose that $f(1)=i, f(2)=i^{2}$, and $f(3)=i^{3}$. If the real part of $f(4)$ can be written as $\frac{m}{n}$ for relatively prime positive integers m, n, find $m^{2}+n^{2}$.
12. What is the sum of all possible $\binom{i}{j}$ subject to the restrictions that $i \geq 10, j \geq 0$, and $i+j \leq 20$? Count different i, j that yield the same value separately - for example, count both $\binom{10}{1}$ and $\binom{10}{9}$.
13. Let $\triangle T B D$ be a triangle with $T B=6, B D=8$, and $D T=7$. Let I be the incenter of $\triangle T B D$, and let $T I$ intersect the circumcircle of $\triangle T B D$ at $M \neq T$. Let lines $T B$ and $M D$ intersect at Y, and let lines $T D$ and $M B$ intersect at X. Let the circumcircles of $\triangle Y B M$ and $\triangle X D M$ intersect at $Z \neq M$. If the area of $\triangle Y B Z$ is x and the area of $\triangle X D Z$ is y, then the ratio $\frac{x}{y}$ can be expressed as $\frac{p}{q}$, where p and q are relatively prime positive integers. Find $p+q$.
14. Kelvin the frog is hopping on the coordinate plane \mathbb{R}^{2}. He starts at the origin, and every second, he hops one unit to the right, left, up, or down, such that he always remains in the first quadrant $\{(x, y): x \geq 0, y \geq 0\}$. In how many ways can Kelvin make his first 14 jumps such that his 14th jump lands at the origin?
15. Let a_{n} denote the number of ternary strings of length n so that there does not exist a $k<n$ such that the first k digits of the string equals the last k digits. What is the largest integer m such that $3^{m} \mid a_{2023}$?

Team:

Write answers in table below:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8

Q9	Q10	Q11	Q12	Q13	Q14	Q15

